Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,311 Bytes
a489b73 dbff21d 99be1d8 dbff21d a370bc6 dbff21d 09c0bd8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 17fe572 99be1d8 67a186c 17fe572 67a186c 99be1d8 17fe572 67a186c 99be1d8 67a186c 17fe572 67a186c 99be1d8 67a186c 99be1d8 67a186c 99be1d8 67a186c 99be1d8 67a186c 99be1d8 67a186c 17fe572 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d f637950 41e77ce 99be1d8 f637950 d1bb46e 41e77ce 99be1d8 dbff21d 99be1d8 dbff21d 17fe572 67a186c 99be1d8 9a83786 99be1d8 dbff21d 99be1d8 2779b9c 67a186c 776d153 67a186c 99be1d8 67a186c dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 67a186c dbff21d 99be1d8 dbff21d e2eda6f 99be1d8 67a186c 99be1d8 67a186c dbff21d 67a186c dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 d86fff3 dbff21d 67a186c 6152ec4 67a186c 99be1d8 67a186c 99be1d8 67a186c 99be1d8 67a186c dbff21d 99be1d8 dbff21d 41e77ce dbff21d 67a186c 99be1d8 dbff21d 99be1d8 dbff21d 99be1d8 3a20400 dbff21d fdb1fce dbff21d 09c0bd8 dbff21d 67a186c dbff21d 99be1d8 dbff21d 99be1d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile
import os
import numpy as np
llasa_1b ='SebastianBodza/Kartoffel-1B-v0.2'
tokenizer = AutoTokenizer.from_pretrained(llasa_1b, token=os.getenv("HF_TOKEN"))
model = AutoModelForCausalLM.from_pretrained(
llasa_1b, trust_remote_code=True, device_map="cuda", token=os.getenv("HF_TOKEN")
)
model_path = "srinivasbilla/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device="cuda",
)
SPEAKERS = {
"Male 1": {
"path": "speakers/deep_speaker.mp3",
"transcript": "Das große Tor von Minas Tirith brach erst, nachdem er die Ramme eingesetzt hatte.",
"description": "Eine tiefe epische Männerstimme.",
},
"Male 2": {
"path": "speakers/male_austrian_accent.mp3",
"transcript": "Man kann sich auch leichter vorstellen, wie schwierig es ist, dass man Entscheidungen trifft, die allen passen.",
"description": "Eine männliche Stimme mit österreicherischem Akzent.",
},
"Male 3": {
"path": "speakers/male_energic.mp3",
"transcript": "Wo keine Infrastruktur, da auch keine Ansiedlung von IT-Unternehmen und deren Beschäftigten bzw. dem geeigneten Fachkräftenachwuchs. Kann man diese Rechnung so einfach aufmachen, wie es es tatsächlich um deren regionale Verteilung beschäftigt?",
"description": "Eine männliche energische Stimme",
},
"Male 4": {
"path": "speakers/schneller_speaker.mp3",
"transcript": "Genau, wenn wir alle Dächer voll machen, also alle Dächer von Einfamilienhäusern, alleine mit den Einfamilienhäusern können wir 20 Prozent des heutigen Strombedarfs decken.",
"description": "Eine männliche Spreche mit schnellerem Tempo.",
},
"Female 1": {
"path": "speakers/female_standard.mp3",
"transcript": "Es wird ein Beispiel für ein barrierearmes Layout gegeben, sowie Tipps und ein Verweis auf eine Checkliste, die hilft, Barrierearmut in den eigenen Materialien zu prüfen bzw. umzusetzen.",
"description": "Eine weibliche Stimme.",
},
"Female 2": {
"path": "speakers/female_energic.mp3",
"transcript": "Dunkel flog weiter durch das Wald. Er sah die Sterne am Phaneten an sich vorbeiziehen und fühlte sich frei und glücklich.",
"description": "Eine weibliche Erzähler-Stimme.",
},
"Female 3": {
"path": "speakers/austrian_accent.mp3",
"transcript": "Die politische Europäische Union war geboren, verbrieft im Vertrag von Maastricht. Ab diesem Zeitpunkt bestehen zwei Vertragswerke.",
"description": "Eine weibliche Stimme mit österreicherischem Akzent.",
},
"Special 1": {
"path": "speakers/low_audio.mp3",
"transcript": "Druckplatten und Lasersensoren, um sicherzugehen, dass er auch da drin ist und",
"description": "Eine männliche Stimme mit schlechter Audioqualität als Effekt.",
},
}
def preview_speaker(display_name):
"""Returns the audio and transcript for preview"""
speaker_name = speaker_display_dict[display_name]
if speaker_name in SPEAKERS:
waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"])
return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"]
return None, ""
def normalize_audio(waveform: torch.Tensor, target_db: float = -20) -> torch.Tensor:
"""
Normalize audio volume to target dB and limit gain range.
Args:
waveform (torch.Tensor): Input audio waveform
target_db (float): Target dB level (default: -20)
Returns:
torch.Tensor: Normalized audio waveform
"""
# Calculate current dB
eps = 1e-10
current_db = 20 * torch.log10(torch.max(torch.abs(waveform)) + eps)
# Calculate required gain
gain_db = target_db - current_db
# Limit gain to -3 to 3 dB range
gain_db = torch.clamp(gain_db, min=-3, max=3)
# Apply gain
gain_factor = 10 ** (gain_db / 20)
normalized = waveform * gain_factor
# Final peak normalization
max_amplitude = torch.max(torch.abs(normalized))
if max_amplitude > 0:
normalized = normalized / max_amplitude
return normalized
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith("<|s_") and token_str.endswith("|>"):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@torch.inference_mode()
@spaces.GPU(duration=15)
def infer_with_speaker(
display_name,
target_text,
temp,
top_p_val,
min_new_tokens,
do_sample,
progress=gr.Progress(),
):
"""Modified infer function that uses predefined speaker"""
speaker_name = speaker_display_dict[display_name] # Get actual speaker name
if speaker_name not in SPEAKERS:
return None, "Invalid speaker selected"
return infer(
SPEAKERS[speaker_name]["path"],
target_text,
temp,
top_p_val,
min_new_tokens,
do_sample,
SPEAKERS[speaker_name]["transcript"], # Pass the predefined transcript
progress,
)
@torch.inference_mode()
@spaces.GPU(duration=15)
def gradio_infer(*args, **kwargs):
return infer(*args, **kwargs)
def infer(
sample_audio_path,
target_text,
temp,
top_p_val,
min_new_tokens,
do_sample,
transcribed_text=None,
progress=gr.Progress(),
):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
progress(0, "Loading and trimming audio...")
waveform, sample_rate = torchaudio.load(sample_audio_path)
waveform = normalize_audio(waveform)
if len(waveform[0]) / sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
waveform = waveform[:, : sample_rate * 15]
waveform = torch.nn.functional.pad(
waveform, (0, int(sample_rate * 0.5)), "constant", 0
)
# Check if the audio is stereo (i.e., has more than one channel)
if waveform.size(0) > 1:
# Convert stereo to mono by averaging the channels
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
else:
# If already mono, just use the original waveform
waveform_mono = waveform
prompt_wav = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=16000
)(waveform_mono)
if transcribed_text is None:
progress(0.3, "Transcribing audio...")
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())["text"].strip()
else:
prompt_text = transcribed_text
progress(0.5, "Transcribed! Generating speech...")
if len(target_text) == 0:
return None
elif len(target_text) > 500:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:500]
input_text = prompt_text + " " + target_text
print("Transcribed text:", input_text)
# TTS start!
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
vq_code_prompt = vq_code_prompt[0, 0, :]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = (
f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
)
# Tokenize the text and the speech prefix
chat = [
{
"role": "user",
"content": "Convert the text to speech:" + formatted_text,
},
{
"role": "assistant",
"content": "<|SPEECH_GENERATION_START|>"
+ "".join(speech_ids_prefix),
},
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors="pt",
continue_final_message=True,
)
input_ids = input_ids.to("cuda")
speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>")
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id=speech_end_id,
do_sample=do_sample,
top_p=top_p_val,
temperature=temp,
min_new_tokens=min_new_tokens,
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix) : -1]
speech_tokens = tokenizer.batch_decode(
generated_ids, skip_special_tokens=False
)
raw_output = " ".join(speech_tokens) # Capture raw tokens
speech_tokens = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True
)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# if only need the generated part
gen_wav = gen_wav[:, :, prompt_wav.shape[1] :]
progress(1, "Synthesized!")
return (
16000,
gen_wav[0, 0, :].cpu().numpy(),
), raw_output # Return both audio and raw tokens
with gr.Blocks() as app_tts:
gr.Markdown("# Zero Shot Voice Clone TTS")
with gr.Accordion("Model Settings", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Temperature",
info="Higher values = more random/creative output",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
label="Top P",
info="Nucleus sampling threshold",
)
min_new_tokens = gr.Slider(
minimum=0,
maximum=128,
value=3,
step=1,
label="Min Length",
info="If the model just produces a click you can force it to create longer generations.",
)
do_sample = gr.Checkbox(
label="Sample", value=True, info="Sample from the distribution"
)
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
raw_output_display = gr.Textbox(
label="Raw Model Output", interactive=False
) # Add textbox
generate_btn.click(
lambda *args: gradio_infer(*args, transcribed_text=None),
inputs=[
ref_audio_input,
gen_text_input,
temperature,
top_p,
min_new_tokens,
do_sample,
],
outputs=[audio_output, raw_output_display], # Include both outputs
)
with gr.Blocks() as app_speaker:
gr.Markdown("# Predefined Speaker TTS")
with gr.Accordion("Model Settings", open=False):
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher values = more random/creative output",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
label="Top P",
info="Nucleus sampling threshold",
)
min_new_tokens = gr.Slider(
minimum=0,
maximum=128,
value=3,
step=1,
label="Min Length",
info="If the model just produces a click you can force it to create longer generations.",
)
do_sample = gr.Checkbox(
label="Sample", value=True, info="Sample from the distribution"
)
with gr.Row():
speaker_display_dict = {
f"{name} - {SPEAKERS[name]['description']}": name
for name in SPEAKERS.keys()
}
speaker_dropdown = gr.Dropdown(
choices=list(speaker_display_dict.keys()),
label="Select Speaker",
value=list(speaker_display_dict.keys())[0],
)
preview_btn = gr.Button("Preview Voice")
with gr.Row():
preview_audio = gr.Audio(label="Preview")
preview_text = gr.Textbox(label="Original Transcript", interactive=False)
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
raw_output_display = gr.Textbox(label="Raw Model Output", interactive=False)
# Connect the preview button
preview_btn.click(
preview_speaker,
inputs=[speaker_dropdown],
outputs=[preview_audio, preview_text],
)
# Connect the generate button
generate_btn.click(
infer_with_speaker,
inputs=[
speaker_dropdown,
gen_text_input,
temperature,
top_p,
min_new_tokens,
do_sample,
],
outputs=[audio_output, raw_output_display],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
""")
with gr.Blocks() as app:
gr.Markdown(
"""
# Kartoffel-1B-v0.2 - llasa 1b TTS
This is a local web UI for my finetune of the llasa 1b SOTA(imo) Zero Shot Voice Cloning and TTS model.
The checkpoints support German. If the audio is of low quality, the model may struggle to generate speech. Turn the **temperature** up to get more coherent results.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
)
gr.TabbedInterface([app_speaker, app_tts], ["Speaker", "Clone"])
app.launch(ssr_mode=False)
|