daphnai commited on
Commit
c5cddc3
1 Parent(s): 1abc161

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -51,14 +51,17 @@ ENDING = """For search acceleration capabilities, please refer to [Searchium.ai]
51
  """
52
 
53
 
54
- DATA_PATH = './new_data'
55
 
56
  ft_visual_features_file = DATA_PATH + '/video_dataset_visual_features_database.npy'
 
57
 
58
  #load database features:
59
- ft_visual_features_database = np.load(ft_visual_features_file)
 
 
60
 
61
- database_csv_path = os.path.join(DATA_PATH, 'half_video_dataset.csv')
62
  database_df = pd.read_csv(database_csv_path)
63
 
64
  class NearestNeighbors:
@@ -117,7 +120,7 @@ model = CLIPTextModelWithProjection.from_pretrained("Searchium-ai/clip4clip-webv
117
  tokenizer = CLIPTokenizer.from_pretrained("Searchium-ai/clip4clip-webvid150k")
118
 
119
  nn_search = NearestNeighbors(n_neighbors=5, metric='binary', rerank_from=100)
120
- nn_search.fit(np.packbits((ft_visual_features_database > 0.0).astype(bool), axis=1), o_data=ft_visual_features_database)
121
 
122
  def search(search_sentence):
123
  inputs = tokenizer(text=search_sentence , return_tensors="pt")
 
51
  """
52
 
53
 
54
+ DATA_PATH = './data'
55
 
56
  ft_visual_features_file = DATA_PATH + '/video_dataset_visual_features_database.npy'
57
+ ft_visual_features_file_bin = DATA_PATH + '/video_dataset_visual_features_database_packed.npy'
58
 
59
  #load database features:
60
+ ft_visual_features_database_bin = np.load(ft_visual_features_file_bin)
61
+ ft_visual_features_database = p.memmap(ft_visual_features_file, dtype='float32', mode='r',
62
+ shape=(ft_visual_features_database_bin.shape[0], ft_visual_features_database_bin.shape[1]*8))
63
 
64
+ database_csv_path = os.path.join(DATA_PATH, 'video_dataset.csv')
65
  database_df = pd.read_csv(database_csv_path)
66
 
67
  class NearestNeighbors:
 
120
  tokenizer = CLIPTokenizer.from_pretrained("Searchium-ai/clip4clip-webvid150k")
121
 
122
  nn_search = NearestNeighbors(n_neighbors=5, metric='binary', rerank_from=100)
123
+ nn_search.fit(ft_visual_features_database_bin, o_data=ft_visual_features_database)
124
 
125
  def search(search_sentence):
126
  inputs = tokenizer(text=search_sentence , return_tensors="pt")