import gradio as gr import time from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor from io import BytesIO from urllib.request import urlopen import librosa import os, json from sys import argv from vllm import LLM, SamplingParams def load_model_processor(model_path): processor = AutoProcessor.from_pretrained(model_path) llm = LLM( model=model_path, trust_remote_code=True, gpu_memory_utilization=0.4, enforce_eager=True, limit_mm_per_prompt={"audio": 5}, ) return llm, processor model_path1 = "Qwen/Qwen2-Audio-7B-Instruct" #argv[1] model1, processor1 = load_model_processor(model_path1) def response_to_audio_conv(conversation, model=None, processor=None, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9, max_new_tokens = 2048): text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": if ele['audio_url'] != None: audios.append(librosa.load( ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0] ) sampling_params = SamplingParams( temperature=temperature, max_tokens=max_new_tokens, repetition_penalty=repetition_penalty, top_p=top_p, top_k=20, stop_token_ids=[], ) input = { 'prompt': text, 'multi_modal_data': { 'audio': [(audio, 16000) for audio in audios] } } output = model.generate([input], sampling_params=sampling_params)[0] response = output.outputs[0].text return response def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def add_message(history, message): paths = [] for turn in history: if turn['role'] == "user" and type(turn['content']) != str: paths.append(turn['content'][0]) for x in message["files"]: if x not in paths: history.append({"role": "user", "content": {"path": x}}) if message["text"] is not None: history.append({"role": "user", "content": message["text"]}) return history, gr.MultimodalTextbox(value=None, interactive=False) def format_user_messgae(message): if type(message['content']) == str: return {"role": "user", "content": [{"type": "text", "text": message['content']}]} else: return {"role": "user", "content": [{"type": "audio", "audio_url": message['content'][0]}]} def history_to_conversation(history): conversation = [] audio_paths = [] for turn in history: if turn['role'] == "user": if not turn['content']: continue turn = format_user_messgae(turn) if turn['content'][0]['type'] == 'audio': if turn['content'][0]['audio_url'] in audio_paths: continue else: audio_paths.append(turn['content'][0]['audio_url']) if len(conversation) > 0 and conversation[-1]["role"] == "user": conversation[-1]['content'].append(turn['content'][0]) else: conversation.append(turn) else: conversation.append(turn) print(json.dumps(conversation, indent=4, ensure_ascii=False)) return conversation def bot(history: list, temperature = 0.1,repetition_penalty=1.1, top_p = 0.9, max_new_tokens = 2048): conversation = history_to_conversation(history) response = response_to_audio_conv(conversation, model=model1, processor=processor1, temperature = temperature,repetition_penalty=repetition_penalty, top_p = top_p, max_new_tokens = max_new_tokens) # response = "Nice to meet you!" print("Bot:",response) history.append({"role": "assistant", "content": ""}) for character in response: history[-1]["content"] += character time.sleep(0.01) yield history insturctions = """**Instruction**: there are three input format: 1. text: input text message only 2. audio: upload audio file or record a voice message 3. audio + text: record a voice message and input text message""" with gr.Blocks() as demo: # gr.Markdown("""
""") # gr.Image("images/seal_logo.png", elem_id="seal_logo", show_label=False,height=80,show_fullscreen_button=False) gr.Markdown( """