# import gradio as gr # import requests # import time # from PIL import Image # from io import BytesIO # # AssemblyAI API Key # ASSEMBLYAI_API_KEY = "your_assemblyai_api_key_here" # # DeepAI API Key # DEEPAI_API_KEY = "your_deepai_api_key_here" # # Function to convert speech to text using AssemblyAI API # def speech_to_text(audio_file): # # Upload audio to AssemblyAI for transcription # upload_url = "https://api.assemblyai.com/v2/upload" # headers = { # "authorization": ASSEMBLYAI_API_KEY # } # # Upload the audio file to AssemblyAI # with open(audio_file, 'rb') as file: # response = requests.post(upload_url, headers=headers, files={"file": file}) # if response.status_code != 200: # return "Error uploading audio." # audio_url = response.json()["upload_url"] # # Request transcription from AssemblyAI # transcript_url = "https://api.assemblyai.com/v2/transcript" # transcript_request = { # "audio_url": audio_url # } # transcript_response = requests.post(transcript_url, json=transcript_request, headers=headers) # if transcript_response.status_code != 200: # return "Error requesting transcription." # transcript_id = transcript_response.json()["id"] # # Poll for transcription completion # while True: # polling_url = f"https://api.assemblyai.com/v2/transcript/{transcript_id}" # polling_response = requests.get(polling_url, headers=headers) # if polling_response.status_code != 200: # return "Error polling for transcription status." # status = polling_response.json()["status"] # if status == "completed": # return polling_response.json()["text"] # elif status == "failed": # return "Transcription failed." # time.sleep(5) # Wait 5 seconds before polling again # # Function to generate an image based on text using DeepAI's Image Generation API # def generate_image_from_text(text): # image_generation_url = "https://api.deepai.org/api/text2img" # headers = { # "api-key": DEEPAI_API_KEY # } # payload = { # "text": text # } # # Request image generation from DeepAI # response = requests.post(image_generation_url, data=payload, headers=headers) # if response.status_code == 200: # # Get the image URL from the response # image_url = response.json()["output_url"] # return image_url # else: # return "Failed to generate image." # # Function to download image from URL and return as a PIL image # def get_image_from_url(image_url): # try: # response = requests.get(image_url) # img = Image.open(BytesIO(response.content)) # return img # except Exception as e: # return "Error downloading image: " + str(e) # # Gradio Interface function # def process_audio(audio_file): # # Convert speech to text # text = speech_to_text(audio_file) # if text and text != "Error uploading audio." and text != "Error requesting transcription.": # print(f"Transcribed text: {text}") # Debug output for transcribed text # # Generate image from the transcribed text # image_url = generate_image_from_text(text) # if "Failed" not in image_url: # print(f"Image URL: {image_url}") # Debug output for image URL # # Download the image from URL and return it as a PIL image # return get_image_from_url(image_url) # else: # return image_url # else: # return "Error processing audio." # # Set up Gradio interface # iface = gr.Interface(fn=process_audio, # inputs=gr.Audio(type="filepath"), # Audio input # outputs=gr.Image(type="pil"), # Image output as PIL image # live=True, # title="Speech-to-Text to Image Generator") # iface.launch() # import gradio as gr # import requests # import time # from PIL import Image # from io import BytesIO # # API keys # ASSEMBLYAI_API_KEY = "your_assemblyai_api_key_here" # STABILITY_AI_API_KEY = "your_stability_ai_api_key_here" # # Function to convert speech to text using AssemblyAI API # def speech_to_text(audio_file): # upload_url = "https://api.assemblyai.com/v2/upload" # headers = { # "authorization": ASSEMBLYAI_API_KEY # } # # Upload the audio file to AssemblyAI # with open(audio_file, 'rb') as file: # response = requests.post(upload_url, headers=headers, files={"file": file}) # if response.status_code != 200: # return "Error uploading audio." # audio_url = response.json()["upload_url"] # # Request transcription from AssemblyAI # transcript_url = "https://api.assemblyai.com/v2/transcript" # transcript_request = { # "audio_url": audio_url # } # transcript_response = requests.post(transcript_url, json=transcript_request, headers=headers) # if transcript_response.status_code != 200: # return "Error requesting transcription." # transcript_id = transcript_response.json()["id"] # # Poll for transcription completion # while True: # polling_url = f"https://api.assemblyai.com/v2/transcript/{transcript_id}" # polling_response = requests.get(polling_url, headers=headers) # if polling_response.status_code != 200: # return "Error polling for transcription status." # status = polling_response.json()["status"] # if status == "completed": # return polling_response.json()["text"] # elif status == "failed": # return "Transcription failed." # time.sleep(5) # Wait 5 seconds before polling again # # Function to generate an image based on text using Stability AI (Stable Diffusion) # def generate_image_from_text(text): # image_generation_url = "https://stability.ai/api/v3/generate" # Stability AI API endpoint (assuming) # headers = { # "Authorization": f"Bearer {STABILITY_AI_API_KEY}" # } # payload = { # "text": text, # "width": 512, # Adjust image dimensions as needed # "height": 512 # } # # Request image generation from Stability AI # response = requests.post(image_generation_url, json=payload, headers=headers) # if response.status_code == 200: # # Get the image URL from the response (assuming the response contains a URL) # image_url = response.json().get("image_url", "") # if image_url: # return image_url # else: # return "Failed to generate image: No image URL found in response." # else: # return f"Failed to generate image: {response.status_code}" # # Function to download image from URL and return as a PIL image # def get_image_from_url(image_url): # try: # response = requests.get(image_url) # img = Image.open(BytesIO(response.content)) # return img # except Exception as e: # return f"Error downloading image: {str(e)}" # # Gradio Interface function # def process_audio(audio_file): # # Convert speech to text # text = speech_to_text(audio_file) # if text and text != "Error uploading audio." and text != "Error requesting transcription.": # print(f"Transcribed text: {text}") # Debug output for transcribed text # # Generate image from the transcribed text # image_url = generate_image_from_text(text) # if "Failed" not in image_url: # print(f"Image URL: {image_url}") # Debug output for image URL # # Download the image from URL and return it as a PIL image # return get_image_from_url(image_url) # else: # return image_url # else: # return "Error processing audio." # # Set up Gradio interface # iface = gr.Interface(fn=process_audio, # inputs=gr.Audio(type="filepath"), # Audio input # outputs=gr.Image(type="pil"), # Image output as PIL image # live=True, # title="Speech-to-Text to Image Generator") # iface.launch() #1st D import subprocess # Install required libraries subprocess.check_call(["pip", "install", "torch>=1.11.0"]) subprocess.check_call(["pip", "install", "transformers"]) subprocess.check_call(["pip", "install", "diffusers>=0.14.0"]) subprocess.check_call(["pip", "install", "librosa"]) subprocess.check_call(["pip", "install", "accelerate>= 0.20.1"]) subprocess.check_call(["pip", "install", "safetensors>=0.1.0"]) subprocess.check_call(["pip", "install", "huggingface_hub>=0.16.4"]) import os import threading import numpy as np import diffusers from functools import lru_cache import gradio as gr from transformers import pipeline from huggingface_hub import login from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import librosa import accelerate import pandas import safetensors import torch # Import torch here to avoid the NameError # Ensure required dependencies are installed def install_missing_packages(): required_packages = { "librosa": None, "diffusers": ">=0.14.0", "gradio": ">=3.35.2", "huggingface_hub": ">=0.16.4", "accelerate": ">= 0.20.1", "safetensors":">=0.1.0", "torch":">=1.11.0", } for package, version in required_packages.items(): try: __import__(package) except ImportError: package_name = f"{package}{version}" if version else package subprocess.check_call(["pip", "install", package_name]) install_missing_packages() # Get Hugging Face token for authentication hf_token = os.getenv("HF_TOKEN") if hf_token: login(hf_token) else: raise ValueError("HF_TOKEN environment variable not set.") # Load speech-to-text model (Whisper) speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-tiny") #Load Stable Diffusion model for text-to-image text_to_image = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" ) # text_to_image = StableDiffusionPipeline.from_pretrained( # "runwayml/stable-diffusion-v1-5", # cache_dir="./my_model_cache", # Custom cache directory # revision="fp16" # ) device = "cuda" if torch.cuda.is_available() else "cpu" # This will now work since torch is imported text_to_image.to(device) text_to_image.enable_attention_slicing() # Optimizes memory usage text_to_image.safety_checker = None # Disables safety checker to improve speed text_to_image.scheduler = DPMSolverMultistepScheduler.from_config(text_to_image.scheduler.config) # Faster scheduler # Preprocess audio file into NumPy array def preprocess_audio(audio_path): try: audio, sr = librosa.load(audio_path, sr=16000) # Resample to 16kHz return np.array(audio, dtype=np.float16) except Exception as e: return f"Error in preprocessing audio: {str(e)}" # Speech-to-text function @lru_cache(maxsize=10) def transcribe_audio(audio_path): try: audio_array = preprocess_audio(audio_path) if isinstance(audio_array, str): # Error message from preprocessing return audio_array result = speech_to_text(audio_array) return result["text"] except Exception as e: return f"Error in transcription: {str(e)}" # Text-to-image function @lru_cache(maxsize=10) def generate_image_from_text(text): try: image = text_to_image(text, height=256, width=256).images[0] # Generate smaller images for speed return image except Exception as e: return f"Error in image generation: {str(e)}" # Optimized combined processing function def process_audio_and_generate_image(audio_path): transcription_result = {"result": None} image_result = {"result": None} # Function to run transcription and image generation in parallel def transcription_thread(): transcription_result["result"] = transcribe_audio(audio_path) def image_generation_thread(): transcription = transcription_result["result"] if transcription and "Error" not in transcription: image_result["result"] = generate_image_from_text(transcription) # Start both tasks in parallel t1 = threading.Thread(target=transcription_thread) t2 = threading.Thread(target=image_generation_thread) t1.start() t2.start() t1.join() # Wait for transcription to finish t2.join() # Wait for image generation to finish transcription = transcription_result["result"] image = image_result["result"] if "Error" in transcription: return None, transcription if isinstance(image, str) and "Error" in image: return None, image return image, transcription # Gradio interface iface = gr.Interface( fn=process_audio_and_generate_image, inputs=gr.Audio(type="filepath", label="Upload audio file (WAV/MP3)"), outputs=[gr.Image(label="Generated Image"), gr.Textbox(label="Transcription")], title="Voice-to-Image Generator", description="Upload an audio file to transcribe speech to text, and then generate an image based on the transcription.", ) # Launch Gradio interface iface.launch(debug=True, share=True) #2 D