import gradio as gr import torch import python_multipart import os from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset, Audio import numpy as np from speechbrain.inference import EncoderClassifier # Load models and processor processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("Sana1207/Hindi_SpeechT5_finetuned") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load speaker encoder device = "cuda" if torch.cuda.is_available() else "cpu" speaker_model = EncoderClassifier.from_hparams( source="speechbrain/spkrec-xvect-voxceleb", run_opts={"device": device}, savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb") ) # # Load a sample from the dataset for speaker embedding # try: # dataset = load_dataset("mozilla-foundation/common_voice_17_0", "hi", split="validated", trust_remote_code=True) # dataset = dataset.cast_column("audio", Audio(sampling_rate=16000)) # sample = dataset[0] # speaker_embedding = create_speaker_embedding(sample['audio']['array']) # except Exception as e: # print(f"Error loading dataset: {e}") # # Use a random speaker embedding as fallback # speaker_embedding = torch.randn(1, 512) def create_speaker_embedding(waveform): with torch.no_grad(): speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform)) speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy() return speaker_embeddings def text_to_speech(text): # Clean up text replacements = [ ("अ", "a"), ("आ", "aa"), ("इ", "i"), ("ई", "ee"), ("उ", "u"), ("ऋ", "ri"), ("ए", "ae"), ("ऐ", "ai"), ("ऑ", "au"), ("ओ", "o"), ("औ", "au"), ("क", "k"), ("ख", "kh"), ("ग", "g"), ("घ", "gh"), ("च", "ch"), ("छ", "chh"), ("ज", "j"), ("झ", "jh"), ("ञ", "gna"), ("ट", "t"), ("ठ", "th"), ("ड", "d"), ("ढ", "dh"), ("ण", "nr"), ("त", "t"), ("थ", "th"), ("द", "d"), ("ध", "dh"), ("न", "n"), ("प", "p"), ("फ", "ph"), ("ब", "b"), ("भ", "bh"), ("म", "m"), ("य", "ya"), ("र", "r"), ("ल", "l"), ("व", "w"), ("श", "sha"), ("ष", "sh"), ("स", "s"), ("ह", "ha"), ("़", "ng"), ("्", ""), ("ऽ", ""), ("ा", "a"), ("ि", "i"), ("ी", "ee"), ("ु", "u"), ("ॅ", "n"), ("े", "e"), ("ै", "oi"), ("ो", "o"), ("ौ", "ou"), ("ॅ", "n"), ("ॉ", "r"), ("ू", "uh"), ("ृ", "ri"), ("ं", "n"), ("क़", "q"), ("ज़", "z"), ("ड़", "r"), ("ढ़", "rh"), ("फ़", "f"), ("|", ".") ] for src, dst in replacements: text = text.replace(src, dst) inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder) return (16000, speech.numpy()) iface = gr.Interface( fn=text_to_speech, inputs="text", outputs="audio", title="Hindi Text-to-Speech", description="Enter Hindi text to convert it into an Audio" ) iface.launch(share=True)