import gradio as gr import pyttsx3 # Text-to-speech import speech_recognition as sr # Speech-to-text from llama_cpp import Llama model = "bartowski/Llama-3.2-1B-Instruct-GGUF" llm = Llama.from_pretrained( repo_id=model, filename="Llama-3.2-1B-Instruct-Q8_0.gguf", verbose=True, use_mmap=True, use_mlock=True, n_threads=4, n_threads_batch=4, n_ctx=2000, ) # Initialize TTS engine tts_engine = pyttsx3.init() # Speech-to-text function def speech_to_text(): recognizer = sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio = recognizer.listen(source) try: text = recognizer.recognize_google(audio) print(f"You said: {text}") return text except sr.UnknownValueError: return "Sorry, I did not understand that." except sr.RequestError as e: return f"Could not request results; {e}" # Text-to-speech function def text_to_speech(response_text): tts_engine.say(response_text) tts_engine.runAndWait() # Main AI response function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" completion = llm.create_chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ) for message in completion: delta = message['choices'][0]['delta'] if 'content' in delta: response += delta['content'] yield response # Speak the AI response text_to_speech(response) # Gradio UI with added microphone component demo = gr.Interface( fn=respond, inputs=[ gr.Microphone(streaming=True, label="Speak your question"), gr.Textbox( value="You are a helpful assistant.", label="System message", ), gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], outputs=gr.Textbox(label="Response"), live=True, description=model, ) if __name__ == "__main__": demo.launch()