from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr # Load the model model_name = "Salesforce/codegen-350M-mono" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) generator = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id) # Function to generate code def generate_code(prompt): output = generator(prompt, max_new_tokens=256, do_sample=True, temperature=0.3, top_p=0.95) return output[0]["generated_text"] # Gradio UI ui = gr.Interface( fn=generate_code, inputs=gr.Textbox(lines=4, label="💬 Enter your Python prompt"), outputs=gr.Code(label="🧠 Generated Python Code"), title="🤖 AI Python Code Generator", description="Type a task like 'write a function to reverse a list', and get Python code.", theme="default" ) ui.launch()