from datasets import load_dataset import numpy as np from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont import torch tokenizer = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") model = LayoutLMv3ForTokenClassification.from_pretrained(r"models") """device = torch.device("cuda") model.cuda() """ labels = ['O', 'B-HEADER', 'I-HEADER', 'B-QUESTION', 'I-QUESTION', 'B-ANSWER', 'I-ANSWER'] id2label = {v: k for v, k in enumerate(labels)} label2color = { "question": "blue", "answer": "green", "header": "orange", "other": "violet", } def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return "other" return label def processor(image): image = image.convert("RGB") width, height = image.size # encode encoding = tokenizer( image, truncation=True, return_offsets_mapping=True, return_tensors="pt" ) offset_mapping = encoding.pop("offset_mapping") encoding = encoding.to('cuda') # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 true_predictions = [ id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx] ] true_boxes = [ unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx] ] draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction).lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text( (box[0] + 10, box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font, ) return image