from transformers import pipeline import gradio as gr #This is a pipeline for text classification using the Arabic MARBERT model for news article classification from Hugging Face. Clasification = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-news-article-classification') #This function will take and input then return the label and the score of that sentence. def classification_fun(news_article): results = Clasification(news_article) return results[0]['label'], results[0]['score'] #CSS styling for the Gradio interface custom_css = """ textarea, .gradio-output { direction: rtl; # background-color: black; # color: white; border: 2px solid #800020; border-radius: 5px; padding: 10px; } label { font-size: 18px; font-weight: bold; text-align: center; background-color: #800020; color: white; box-shadow: 2px 2px 5px rgba(0,0,0,0.2); padding: 5px; display: block; margin: 10px 0; } .gradio-container { background-color: black; padding: 20px; box-sizing: border-box; } """ my_model = gr.Interface( fn=classification_fun, inputs=gr.Textbox(label="News Articles", lines=10, placeholder="Enter your Article"), outputs=[gr.Textbox(label="Label of the Article"), gr.Number(label="Confidence Score")], css=custom_css ) my_model.launch()