# -*- coding: utf-8 -*- """ Created on Fri Nov 11 16:01:08 2022 @author: Santiago Moreno """ import os import gradio as gr import sys import json default_path = os.path.dirname(os.path.abspath(__file__)) #default_path = default_path.replace('\\', '/') os.chdir(default_path) sys.path.insert(0, default_path+'/../scripts') from src.scripts.functionsner import use_model, tag_sentence, json_to_txt, training_model, characterize_data, upsampling_data, usage_cuda, copy_data from src.scripts.functionsrc import use_model_rc, training_model_rc, usage_cuda_rc models = os.listdir(default_path+'/../../models') models.remove('RC') models_rc = os.listdir(default_path+'/../../models/RC') #-------------------------------------------Functions----------------------------------------------- #--------------------------------------NER----------------------------------- def Trainer(fast, model_name, standard, input_dir, Upsampling, Cuda): if fast: epochs = 1 else: epochs = 20 if Cuda: cuda_info = usage_cuda(True) else: cuda_info = usage_cuda(False) if standard: copy_data(input_dir) else: Error = json_to_txt(input_dir) if type(Error)==int: yield 'Error processing the input documents, code error {}'.format(Error) if Upsampling: yield cuda_info+'\n'+'-'*20+'Upsampling'+'-'*20 entities_dict=characterize_data() entities = list(entities_dict.keys()) entities_to_upsample = [entities[i] for i,value in enumerate(entities_dict.values()) if value < 200] upsampling_data(entities_to_upsample, 0.8, entities) yield '-'*20+'Training'+'-'*20 else: yield cuda_info+'\n'+'-'*20+'Training'+'-'*20 Error = training_model(model_name, epochs) if type(Error)==int: yield 'Error training the model, code error {}'.format(Error) else: yield 'Training complete, model {} could be found at models/{}'.format(model_name,model_name) def Tagger_sentence(Model, Sentence, Cuda): if Cuda: cuda_info = usage_cuda(True) else: cuda_info = usage_cuda(False) yield cuda_info+'\n'+'-'*20+'Tagging'+'-'*20 results = tag_sentence(Sentence, Model) if type(results)==int: yield "Error {}, see documentation".format(results) else: yield results['Highligth'] def Tagger_json(Model, Input_file, Output_file, Cuda): if Cuda: cuda_info = usage_cuda(True) else: cuda_info = usage_cuda(False) with open(Output_file, "w", encoding='utf-8') as write_file: json.dump({'error':'error'}, write_file) yield cuda_info+'\n'+'-'*20+'Tagging'+'-'*20, {}, Output_file results = use_model(Model, Input_file.name, Output_file) if type(results)==int: error_dict = {} yield "Error {}, see documentation".format(results), error_dict, Output_file else: yield { "text" : results['text'], 'entities': results['entities']}, results, Output_file #--------------------RC------------------------------- def Trainer_RC(fast, model_name, input_file, rel2id_file, Cuda): if fast: epochs = 1 else: epochs = 200 if Cuda: cuda_info = usage_cuda_rc(True) else: cuda_info = usage_cuda_rc(False) yield cuda_info+'\n'+'-'*20+'Training'+'-'*20 Error = training_model_rc(model_name, input_file.name, rel2id_file.name ,epochs) if type(Error)==int: yield 'Error training the model, code error {}'.format(Error) else: yield 'Training complete, model {} could be found at models/{}'.format(model_name,model_name) def Tagger_document_RC(Model, Input_file, Output_file, Cuda): if Cuda: cuda_info = usage_cuda_rc(True) else: cuda_info = usage_cuda_rc(False) with open(Output_file, "w", encoding='utf-8') as write_file: json.dump({'error':'error'}, write_file) yield {'cuda':cuda_info}, Output_file results = use_model_rc(Model, Input_file.name, Output_file) if type(results)==int: error_dict = {} yield error_dict, Output_file else: yield results, Output_file #---------------------------------GUI------------------------------------- def execute_GUI(): global models with gr.Blocks(title='NER', css="#title {font-size: 150% } #sub {font-size: 120% } ") as demo: gr.Markdown("Named Entity Recognition(NER) and Relation Classification (RC) by GITA and Pratec Group S.A.S.",elem_id="title") gr.Markdown("Software developed by Santiago Moreno, Daniel Escobar, and Rafael Orozco",elem_id="sub") gr.Markdown("Named Entity Recognition(NER) and Relation Classification (RC) System.") with gr.Tab("NER"): gr.Markdown("Use Tagger to apply NER from a pretrained model in a sentence or a given document in INPUT (.JSON) format.") gr.Markdown("Use Trainer to train a new NER model from a directory of documents in PRATECH (.JSON) format.") with gr.Tab("Tagger"): with gr.Tab("Sentence"): with gr.Row(): with gr.Column(): b = gr.Radio(list(models), label='Model') inputs =[ b, gr.Textbox(placeholder="Enter sentence here...", label='Sentence'), gr.Radio([True,False], label='CUDA', value=False), ] tagger_sen = gr.Button("Tag") output = gr.HighlightedText() tagger_sen.click(Tagger_sentence, inputs=inputs, outputs=output) b.change(fn=lambda value: gr.update(choices=list(os.listdir('../../models')).remove('RC')), inputs=b, outputs=b) gr.Examples( examples=[ ['CCC',"Camara de comercio de medellín. El ciudadano JAIME JARAMILLO VELEZ identificado con C.C. 12546987 ingresó al plantel el día 1/01/2022"], ['CCC',"Razón Social GASEOSAS GLACIAR S.A.S, ACTIVIDAD PRINCIPAL fabricación y distribución de bebidas endulzadas"] ], inputs=inputs ) with gr.Tab("Document"): with gr.Row(): with gr.Column(): c = gr.Radio(list(models), label='Model') inputs =[ c, gr.File(label='Input data file'), gr.Textbox(placeholder="Enter path here...", label='Output data file path'), #value='../../data/Tagged/document_tagged.json'), gr.Radio([True,False], label='CUDA', value=False), ] tagger_json = gr.Button("Tag") output = [ gr.HighlightedText(), gr.JSON(), gr.File(), ] models = os.listdir(default_path+'/../../models') models.remove('RC') tagger_json.click(Tagger_json, inputs=inputs, outputs=output) c.change(fn=lambda value: gr.update(choices=list(os.listdir('../../models')).remove('RC')), inputs=c, outputs=c) with gr.Tab("Trainer"): with gr.Row(): with gr.Column(): train_input = inputs =[ gr.Radio([True,False], label='Fast training', value=True), gr.Textbox(placeholder="Enter model name here...", label='New model name'), gr.Radio([True,False], label='Standard input', value=False), gr.Textbox(placeholder="Enter path here...", label='Input data directory path'), gr.Radio([True,False], label='Upsampling', value=False), gr.Radio([True,False], label='CUDA', value=False), ] trainer = gr.Button("Train") train_output = gr.TextArea(placeholder="Output information", label='Output') with gr.Tab("RC"): gr.Markdown("Use Tagger to apply RC from a pretrained model in document in (.TXT) CONLL04 format.") gr.Markdown("Use Trainer to train a new RC model from a file (.TXT) CONLL04 format and the rel2id file (.JSON).") with gr.Tab("Tagger Document"): with gr.Row(): with gr.Column(): c = gr.Radio(list(models_rc), label='Model') inputs =[ c, gr.File(label='Input data file'), gr.Textbox(placeholder="Enter path here...", label='Output data file path (.JSON)'), #value='../../data/Tagged/document_tagged.json'), gr.Radio([True,False], label='CUDA', value=False), ] tagger_json = gr.Button("Tag") output = [ gr.JSON(), gr.File(), ] tagger_json.click(Tagger_document_RC, inputs=inputs, outputs=output) c.change(fn=lambda value: gr.update(choices=list(os.listdir('../../models/RC'))), inputs=c, outputs=c) with gr.Tab("Trainer"): with gr.Row(): with gr.Column(): train_input = inputs =[ gr.Radio([True,False], label='Fast training', value=True), gr.Textbox(placeholder="Enter model name here...", label='New model name'), gr.File(label='Input train file (.TXT)'), gr.File(label='Input rel2id file (.JSON)'), gr.Radio([True,False], label='CUDA', value=False), ] trainer = gr.Button("Train") train_output = gr.TextArea(placeholder="Output information", label='Output') trainer.click(Trainer_RC, inputs=train_input, outputs=train_output) demo.queue() demo.launch(server_name="0.0.0.0", server_port=8080,inbrowser=True, share = True)