# -*- coding: utf-8 -*- """semantic_song_search.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/17IwipreOw_cvu1TsA4WUrfzxTBBHMiVh """ from sentence_transformers import SentenceTransformer, util from datasets import load_dataset import gradio as gr import pandas as pd import torch import numpy as np """### model all mini -- small dataset """ model_all_mini = SentenceTransformer('all-MiniLM-L12-v2') sds = load_dataset("Santarabantoosoo/small_lyrics_dataset") sds = pd.DataFrame(sds['train']) # sds = pd.read_csv("data/small_dataset.csv") sds.head() embeddings_sds = model_all_mini.encode(sds['lyrics']) sds['embeddings'] = list(embeddings_sds) def relevance_scores(query_embed): scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings']] scores = pd.Series(scores) return(scores) def semantic_search(query_sentence, df = sds, return_top = False): query_embed = model_all_mini.encode(query_sentence) scores = relevance_scores(query_embed) df['scores'] = scores sorted_df = df.sort_values(by = 'scores', ascending = False) if return_top == False: sorted_df['scores'] = round(sorted_df['scores'],3) return sorted_df[['title','artist','scores']].head(3) else: return sorted_df.iloc[0]['lyrics'][:200] def cosine_similarity(v1, v2): d = np.dot(v1, v2) cos_theta = d / (np.linalg.norm(v1) * np.linalg.norm(v2)) return(cos_theta) semantic_search("i'm pleased you are doing well after we left each other") print(semantic_search("i'm pleased you are doing well after we left each other", return_top = True)) """### model msmarco-distilbert-base-dot-prod-v3 with hf dataset (with song name)""" query = ["i'm pleased you are doing well after we left each other"] # hf_data = pd.read_csv('data/hf_train_with_SName.csv') hf_data = load_dataset("Santarabantoosoo/hf_song_lyrics_with_names") hf_data = pd.DataFrame(hf_data['train']) hf_data['Lyric'] = hf_data['Lyric'].str.replace('\\n', "") hf_data.head() model_msmarco_v3 = SentenceTransformer('msmarco-distilbert-base-dot-prod-v3') query_embedding = model_msmarco_v3.encode(query) passage_embedding = model_msmarco_v3.encode(hf_data[:1000].Lyric) corpus_embeddings = torch.from_numpy(passage_embedding).float().to('cuda') corpus_embeddings = util.normalize_embeddings(corpus_embeddings) # query_embeddings = torch.from_numpy(query_embedding).float().to('cuda') # query_embeddings = util.normalize_embeddings(query_embeddings) # hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score) # best_match = hits[0][0]['corpus_id'] # hf_data.iloc[best_match, :] # hf_data.iloc[best_match]['Lyric'] # hf_data.head() def msmarco_match(query, return_top = True): query_embedding = model_msmarco_v3.encode(query) query_embeddings = torch.from_numpy(query_embedding).float().to('cuda') query_embeddings = util.normalize_embeddings(query_embeddings) hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score) top_hits = hits[0][0:3] ids = [item['corpus_id'] for item in top_hits] scores = pd.Series([round(item['score'],3) for item in top_hits]) if return_top == True: return hf_data.iloc[ids[0]]['Lyric'][:200] else: songs = hf_data.iloc[ids].reset_index() songs = pd.concat([songs, scores], axis = 1) songs.rename(columns={0: 'Score'}, inplace=True) return songs.drop(columns = 'index') msmarco_match(query, return_top= False) msmarco_match(query) msmarco_match(query, return_top = False) """## Fine-tuned all-mini -- small dataset""" model_fine_tuned = SentenceTransformer('Santarabantoosoo/songs_fine-tuned-all-MiniLM-L12-v2') embeddings_sds_ft = model_fine_tuned.encode(sds['lyrics']) sds['embeddings_ft'] = list(embeddings_sds_ft) def relevance_scores_ft(query_embed): scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings_ft']] scores = pd.Series(scores) return(scores) def semantic_search_ft(query_sentence, df = sds, return_top = False): query_embed = model_fine_tuned.encode(query_sentence) scores = relevance_scores(query_embed) df['scores'] = scores sorted_df = df.sort_values(by = 'scores', ascending = False) if return_top == False: sorted_df['scores'] = round(sorted_df['scores'],3) return sorted_df[['title','artist','scores']].head(3) else: return sorted_df.iloc[0]['lyrics'][:200] """## Gradio App """ def get_recom(choice, query): if choice == "all-MiniLM": return semantic_search(query), semantic_search(query, return_top = True) elif choice == "all-MiniLM-fine-tuned": return semantic_search_ft(query), semantic_search_ft(query, return_top = True) else: list_query = [] query2 = query list_query.append([query, query2]) return msmarco_match(list_query, return_top = False) , msmarco_match(list_query) iface = gr.Interface( title = 'Enjoy our recommendations', description = 'Do you think we can guess what you like?', fn=get_recom, inputs= [ gr.Radio(choices = ["all-MiniLM", "all-MiniLM-fine-tuned", "msmarco"], label="Choose ur model"), gr.Textbox(lines=4, placeholder="Enter ur query...", label = 'Query', show_label = True)], outputs = [gr.Dataframe(label = "Top songs", show_label = True), gr.Text(label = 'A glimpse of the closest match', show_label = True)] ,live = False, interpretation="default", ) iface.launch(share = False, debug = True) from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1') query_embedding = model.encode('I am so happy') passage_embedding = model.encode(sds['embeddings']) print("Similarity:", util.dot_score(query_embedding, passage_embedding))