Spaces:
Runtime error
Runtime error
santarabantoosoo
commited on
Commit
•
571d313
1
Parent(s):
c802c7b
basic sentiment analysis
Browse files- app.py +124 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.express as px
|
6 |
+
from stop_words import get_stop_words
|
7 |
+
from wordcloud import WordCloud
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
|
11 |
+
## import data
|
12 |
+
|
13 |
+
dataset = load_dataset("Santarabantoosoo/italian_long_covid_tweets")
|
14 |
+
data = pd.DataFrame.from_dict(dataset["train"])
|
15 |
+
|
16 |
+
# formulate a wordcloud for each emotion
|
17 |
+
|
18 |
+
stop = get_stop_words('italian')
|
19 |
+
|
20 |
+
# Wordcloud with anger tweets
|
21 |
+
angry_tweets = data['tweet'][data["emotion"] == 'anger']
|
22 |
+
stop_words = ["https", "co", "RT"] + list(stop)
|
23 |
+
anger_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(angry_tweets))
|
24 |
+
|
25 |
+
# Wordcloud with sad tweets
|
26 |
+
sad_tweets = data['tweet'][data["emotion"] == 'sadness']
|
27 |
+
stop_words = ["https", "co", "RT"] + list(stop)
|
28 |
+
sad_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(sad_tweets))
|
29 |
+
|
30 |
+
# Wordcloud with joy tweets
|
31 |
+
joy_tweets = data['tweet'][data["emotion"] == 'joy']
|
32 |
+
stop_words = ["https", "co", "RT"] + list(stop)
|
33 |
+
joy_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(joy_tweets))
|
34 |
+
|
35 |
+
|
36 |
+
# Wordcloud with fear tweets
|
37 |
+
fear_tweets = data['tweet'][data["emotion"] == 'fear']
|
38 |
+
stop_words = ["https", "co", "RT"] + list(stop)
|
39 |
+
fear_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(fear_tweets))
|
40 |
+
|
41 |
+
# combine wordclouds in a single matplotlib figure
|
42 |
+
|
43 |
+
wc_fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)
|
44 |
+
|
45 |
+
wc_fig.tight_layout()
|
46 |
+
|
47 |
+
ax1.imshow(sad_wordcloud, interpolation="bilinear")
|
48 |
+
|
49 |
+
ax1.axis("off")
|
50 |
+
|
51 |
+
ax1.set_title('Sadness', {'fontsize': 30})
|
52 |
+
|
53 |
+
|
54 |
+
ax2.imshow(joy_wordcloud, interpolation="bilinear")
|
55 |
+
|
56 |
+
ax2.axis("off")
|
57 |
+
|
58 |
+
ax2.set_title('Joy', {'fontsize': 30})
|
59 |
+
|
60 |
+
|
61 |
+
ax3.imshow(fear_wordcloud, interpolation="bilinear")
|
62 |
+
|
63 |
+
ax3.axis("off")
|
64 |
+
|
65 |
+
ax3.set_title('Fear', {'fontsize': 30})
|
66 |
+
|
67 |
+
|
68 |
+
ax4.imshow(anger_wordcloud, interpolation="bilinear")
|
69 |
+
|
70 |
+
ax4.axis("off")
|
71 |
+
|
72 |
+
ax4.set_title('Anger', {'fontsize': 30})
|
73 |
+
|
74 |
+
|
75 |
+
plt.show()
|
76 |
+
|
77 |
+
# plot a pie plot for emotions' distribution
|
78 |
+
|
79 |
+
number_tweets_per_day = data.groupby(['date', 'emotion']).agg({'id': 'count'}).reset_index()
|
80 |
+
|
81 |
+
number_tweets_per_day["tweet_date"] = pd.to_datetime(number_tweets_per_day["date"])
|
82 |
+
|
83 |
+
time_fig = px.line(number_tweets_per_day, x = 'tweet_date', y = 'id', labels = {'id': 'count'}, color = 'emotion',
|
84 |
+
color_discrete_sequence=px.colors.qualitative.G10)
|
85 |
+
|
86 |
+
# create a lineplot for emotions
|
87 |
+
|
88 |
+
sentiment_counts = data.groupby('emotion').agg({'id' : 'size'}).reset_index()
|
89 |
+
sentiment_counts.rename(columns = {'id':'count'}, inplace = True)
|
90 |
+
sent_fig = px.pie(sentiment_counts, values='count', names='emotion', title='Tweets within each emotion', labels = {'id': 'count'},
|
91 |
+
color_discrete_sequence=px.colors.qualitative.G10)
|
92 |
+
sent_fig
|
93 |
+
|
94 |
+
|
95 |
+
def display_plot(image_choice):
|
96 |
+
|
97 |
+
if image_choice == 'Sentiment distribution':
|
98 |
+
return sent_fig
|
99 |
+
|
100 |
+
elif image_choice == 'Time series':
|
101 |
+
return time_fig
|
102 |
+
|
103 |
+
elif image_choice == 'Word clouds':
|
104 |
+
return wc_fig
|
105 |
+
|
106 |
+
|
107 |
+
with gr.Blocks() as demo:
|
108 |
+
gr.Markdown("## Choose your adventure")
|
109 |
+
with gr.Tabs():
|
110 |
+
with gr.TabItem("Sentiment analysis"):
|
111 |
+
text_input = [gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot')]
|
112 |
+
plot_output = gr.Plot()
|
113 |
+
text_button = gr.Button("Submit")
|
114 |
+
|
115 |
+
text_button.click(display_plot, inputs=text_input, outputs=plot_output)
|
116 |
+
|
117 |
+
with gr.TabItem("Word frequency"):
|
118 |
+
gr.Markdown("Nothing here yet")
|
119 |
+
|
120 |
+
with gr.TabItem("Topic modeling"):
|
121 |
+
gr.Markdown("Nothing here yet")
|
122 |
+
|
123 |
+
|
124 |
+
demo.launch();
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
plotly
|
5 |
+
stop_words
|
6 |
+
wordcloud
|