Spaces:
Runtime error
Runtime error
File size: 11,175 Bytes
660349e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team and Jangwon Park
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for KoBERT model """
import logging
import os
import unicodedata
from shutil import copyfile
from transformers import PreTrainedTokenizer
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "tokenizer_78b3253a26.model",
"vocab_txt": "vocab.txt",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/tokenizer_78b3253a26.model",
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/tokenizer_78b3253a26.model",
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/tokenizer_78b3253a26.model",
},
"vocab_txt": {
"monologg/kobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert/vocab.txt",
"monologg/kobert-lm": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/kobert-lm/vocab.txt",
"monologg/distilkobert": "https://s3.amazonaws.com/models.huggingface.co/bert/monologg/distilkobert/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"monologg/kobert": 512,
"monologg/kobert-lm": 512,
"monologg/distilkobert": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"monologg/kobert": {"do_lower_case": False},
"monologg/kobert-lm": {"do_lower_case": False},
"monologg/distilkobert": {"do_lower_case": False},
}
SPIECE_UNDERLINE = "▁"
class KoBertTokenizer(PreTrainedTokenizer):
"""
SentencePiece based tokenizer. Peculiarities:
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
vocab_txt,
do_lower_case=False,
remove_space=True,
keep_accents=False,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs,
):
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
# Build vocab
self.token2idx = dict()
self.idx2token = []
with open(vocab_txt, "r", encoding="utf-8") as f:
for idx, token in enumerate(f):
token = token.strip()
self.token2idx[token] = idx
self.idx2token.append(token)
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece"
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.vocab_txt = vocab_txt
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
@property
def vocab_size(self):
return len(self.idx2token)
def get_vocab(self):
return dict(self.token2idx, **self.added_tokens_encoder)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use KoBertTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece"
)
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text):
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
def _convert_token_to_id(self, token):
""" Converts a token (str/unicode) in an id using the vocab. """
return self.token2idx.get(token, self.token2idx[self.unk_token])
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
return self.idx2token[index]
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
return out_string
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens.
A KoBERT sequence has the following format:
single sequence: [CLS] X [SEP]
pair of sequences: [CLS] A [SEP] B [SEP]
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
Args:
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model."
)
return list(
map(
lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0,
token_ids_0,
)
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A KoBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
if token_ids_1 is None, only returns the first portion of the mask (0's).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory):
"""Save the sentencepiece vocabulary (copy original file) and special tokens file
to a directory.
"""
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
# 1. Save sentencepiece model
out_vocab_model = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_model):
copyfile(self.vocab_file, out_vocab_model)
# 2. Save vocab.txt
index = 0
out_vocab_txt = os.path.join(save_directory, VOCAB_FILES_NAMES["vocab_txt"])
with open(out_vocab_txt, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.token2idx.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
"Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(out_vocab_txt)
)
index = token_index
writer.write(token + "\n")
index += 1
return out_vocab_model, out_vocab_txt
|