
Gradio UI - 21 May 2023 – My Experimentation and learning

Gradio is an open-source library that was developed by Abubakar Abid, the CEO and Co-
founder of Gradio.ai. It was created to simplify the process of creating user interfaces for
machine learning models.
While Gradio can be used for a wide range of machine learning applications, including
chatbots, it is not specifically designed exclusively for chatbots. Gradio provides a simple and
intuitive way to create interactive interfaces for various types of models, including text,
image, audio, and video models. It allows users to easily input data and visualize the model's
outputs.
Gradio's flexibility makes it suitable for a variety of use cases, including chatbots, sentiment
analysis, image classification, style transfer, question answering systems, and more. Its goal
is to provide a user-friendly and accessible way for developers and researchers to share and
demonstrate their machine learning models.
Whether you are building a chatbot or any other type of interactive machine learning
application, Gradio can be a valuable tool to quickly prototype, test, and showcase your
models with a user-friendly interface.

Topic Description

What is Gradio? Gradio is an open-source Python library that allows you to create user interfaces

for machine learning models in a web-based environment.

Language Gradio is primarily written in Python.

Usage Gradio can be used for rapid prototyping, model testing, debugging,

demonstrating models, collecting feedback, and integration into Python

notebooks or webpages.

Interface Gradio interfaces can be created for text, image, audio, and video models across

different platforms such as TensorFlow, PyTorch, etc.

Execution

Environment

Gradio applications can run both locally and on the web, but in both cases, the

interface is presented in a web browser.

Local/Desktop

Execution

Gradio code can be run on your local machine. By default, launching a Gradio

interface starts a local server that you can access from your web browser.

Online/Web

Execution

The same Gradio code can also be run online. If you want your Gradio interface

to be accessible over the internet, use the share=True parameter when you launch

the interface.

Web Framework Gradio uses Flask, a micro web framework written in Python, to create a local web

server for the interface.

Sharing Gradio interfaces can be shared with others over the internet using the share=True

option.

Security When exposing a local server to the internet, ensure you are following good

security practices.

Alternatives to

Gradio

Streamlit, Dash by Plotly, Jupyter Widgets (ipywidgets), Voila, Panel by HoloViz,

Flask, Django, PyQt, Tkinter.

Easiest to Start

With

Streamlit and Gradio are considered the most beginner-friendly and quickest for

prototyping.

Gradio vs PyQt Gradio simplifies creating interfaces for machine learning models by providing

high-level abstractions, seamless integration with ML libraries, built-in model

sharing, and a user-friendly, web-based approach. In comparison, PyQt, a

Gradio UI - 21 May 2023 – My Experimentation and learning

traditional GUI tool, requires more manual setup and programming for similar

use-cases.

Gradio Execution Gradio does not use desktop windowing systems like PyQt or Tkinter, it runs a

local server (using Flask) which is accessed via a web browser. This applies

whether running locally or over the internet.

Gradio and

Notebooks

Gradio can be easily integrated into Jupyter notebooks, allowing you to create

and view interactive interfaces within the notebook environment. This can be

useful for exploring and demonstrating models during development.

Gradio and

Hugging Face

Spaces

Hugging Face Spaces is a platform for hosting and sharing machine learning

models. It allows you to create web applications using frameworks like Gradio

and Streamlit. With Gradio, you can create user-friendly interfaces for your

Hugging Face models and host them in Spaces.

Converting the provided PyQt code to Gradio involves shifting the focus from event-driven
GUI programming (as PyQt does) to functional programming which Gradio is based on.
Here's a Gradio implementation of your code. It accepts an uploaded CSV file, performs the
same analyses, and returns the modified CSV file as a downloadable output. Note that for
the purpose of simplicity and readability, this script assumes the presence of a column
named 'Content' in the input CSV.

import pandas as pd
import spacy
import gradio as gr
import csv
from nrclex import NRCLex
from transformers import pipeline
from rake_nltk import Rake

Initialize objects
emotion_pipeline = pipeline('sentiment-analysis', model='nlptown/bert-base-multilingual-uncased-
sentiment')
nlp = spacy.load('en_core_web_sm')
rake = Rake()

def process_csv(file):
 reader = csv.DictReader(file)
 emotions = []
 sentiments = []
 entities = []
 keywords = []
 for row in reader:
 text = row['Content'] # Replace 'Content' with the correct column name
 nrc_obj = NRCLex(text)
 emotion_scores = nrc_obj.affect_frequencies
 emotions.append(emotion_scores)
 sentiment = analyze_emotion(text)
 sentiments.append(sentiment)
 entities.append(analyze_entities(text))
 keywords.append(extract_keywords(text)) # Extract keywords for each text

 fieldnames = reader.fieldnames + list(emotions[0].keys()) + ['sentiment', 'entities', 'keywords']
 output = []
 for row, emotion_scores, sentiment, entity, keyword in zip(reader, emotions, sentiments, entities,
keywords):
 row.update(emotion_scores) # Update the row dictionary with emotion scores

Gradio UI - 21 May 2023 – My Experimentation and learning

 row.update({'sentiment': sentiment, 'entities': entity, 'keywords': keyword}) # Update the
row dictionary with sentiment, entities and keywords
 output.append({field: row.get(field, '') for field in fieldnames}) # Write row with matching
fields or empty values
 return pd.DataFrame(output).to_csv(index=False)

def analyze_emotion(text):
 result = emotion_pipeline(text)[0]
 sentiment = result['label']
 return sentiment

def analyze_entities(text):
 doc = nlp(text)
 entities = [(ent.text, ent.label_) for ent in doc.ents]
 return entities

def extract_keywords(text):
 rake.extract_keywords_from_text(text)
 return rake.get_ranked_phrases() # Extract keywords from text

iface = gr.Interface(fn=process_csv, inputs=gr.inputs.File(type='csv'), outputs=gr.outputs.File())
iface.launch()

Enhanced:

import pandas as pd
import spacy
import gradio as gr
import csv
from nrclex import NRCLex
from transformers import pipeline
from rake_nltk import Rake

Initialize objects
emotion_pipeline = pipeline('sentiment-analysis', model='nlptown/bert-base-multilingual-uncased-
sentiment')
nlp = spacy.load('en_core_web_sm')
rake = Rake()

def process_csv(file):
 reader = csv.DictReader(file)
 emotions = []
 sentiments = []
 entities = []
 keywords = []
 for row in reader:
 text = row['Content']
 nrc_obj = NRCLex(text)
 emotion_scores = nrc_obj.affect_frequencies
 emotions.append(emotion_scores)
 sentiment = analyze_emotion(text)
 sentiments.append(sentiment)
 entities.append(analyze_entities(text))
 keywords.append(extract_keywords(text))

 fieldnames = reader.fieldnames + list(emotions[0].keys()) + ['sentiment', 'entities', 'keywords']
 output = []
 for row, emotion_scores, sentiment, entity, keyword in zip(reader, emotions, sentiments, entities,
keywords):
 row.update(emotion_scores)
 row.update({'sentiment': sentiment, 'entities': entity, 'keywords': keyword})
 output.append({field: row.get(field, '') for field in fieldnames})
 df = pd.DataFrame(output)
 return df, df.to_csv(index=False)

def analyze_emotion(text):

Gradio UI - 21 May 2023 – My Experimentation and learning

 result = emotion_pipeline(text)[0]
 sentiment = result['label']
 return sentiment

def analyze_entities(text):
 doc = nlp(text)
 entities = [(ent.text, ent.label_) for ent in doc.ents]
 return entities

def extract_keywords(text):
 rake.extract_keywords_from_text(text)
 return rake.get_ranked_phrases()

def instructions():
 return "Please upload a CSV file. The file should contain a column named 'Content'. After
processing, a preview of the results will be shown and a new CSV file with additional columns for
sentiment, entities, and keywords can be downloaded."

iface = gr.Interface(fn=process_csv,
 inputs=["csv", instructions],
 outputs=["dataframe", gr.outputs.File(extension=".csv")],
 title="Emotion and Keyword Analyzer",
 description="Upload a CSV file that contains a 'Content' column. The content will
be analyzed for sentiment, entities, and keywords.")
iface.launch()

	Enhanced:

