from tensorflow.keras.models import load_model import numpy as np import cv2 import gradio as gr model = load_model('model-3.h5') def predict_from_img(img): img = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY) img = img/255.0 img = np.expand_dims(img,axis = 0) output = model.predict(img)[0][0] return {'NORMAL':float(output),'PNEUMONIA':float(1-output)} image = gr.inputs.Image(shape=(150,150)) label = gr.outputs.Label(num_top_classes=2) gr.Interface(fn=predict_from_img, inputs=image, outputs=label,title = 'PNEUMONIA-DETECTION').launch()