import functools import inspect import sys import os import traceback import typing from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output SEED = 1236 set_seed(SEED) os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' from typing import Union import numpy as np import pandas as pd import fire import torch from peft import PeftModel from transformers import GenerationConfig, StoppingCriteriaList, AutoModel from accelerate import init_empty_weights, infer_auto_device_map from prompter import Prompter from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \ human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub is_hf = bool(os.getenv("HUGGINGFACE_SPACES")) is_gpth2oai = bool(os.getenv("GPT_H2O_AI")) is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer is_low_mem = is_hf # assumes run on 24GB consumer GPU admin_pass = os.getenv("ADMIN_PASS") # will sometimes appear in UI or sometimes actual generation, but maybe better than empty result raise_generate_gpu_exceptions = True def main( load_8bit: bool = False, load_half: bool = True, infer_devices: bool = True, base_model: str = '', tokenizer_base_model: str = '', lora_weights: str = "", gpu_id: int = 0, # if infer_devices = True and gpu_id != -1 prompt_type: Union[int, str] = None, # input to generation temperature: float = None, top_p: float = None, top_k: int = None, num_beams: int = None, repetition_penalty: float = None, num_return_sequences: int = None, do_sample: bool = None, max_new_tokens: int = None, min_new_tokens: int = None, early_stopping: Union[bool, str] = None, max_time: float = None, llama_type: bool = None, debug: bool = False, save_dir: str = None, share: bool = True, local_files_only: bool = False, resume_download: bool = True, use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running src_lang: str = "English", tgt_lang: str = "Russian", gradio: bool = True, gradio_avoid_processing_markdown: bool = False, chat: bool = True, chat_history: int = 4096, # character length of chat context/history stream_output: bool = True, show_examples: bool = None, verbose: bool = False, h2ocolors: bool = True, height: int = 400, show_lora: bool = True, # set to True to load --base_model after client logs in, # to be able to free GPU memory when model is swapped login_mode_if_model0: bool = False, sanitize_user_prompt: bool = True, sanitize_bot_response: bool = True, extra_model_options: typing.List[str] = [], extra_lora_options: typing.List[str] = [], score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2', auto_score: bool = True, eval_sharegpt_prompts_only: int = 0, eval_sharegpt_prompts_only_seed: int = 1234, eval_sharegpt_as_output: bool = False, ): # allow set token directly use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token) if is_public: temperature = 0.4 top_p = 0.85 top_k = 70 do_sample = True if is_low_mem: base_model = 'h2oai/h2ogpt-oasst1-512-12b' load_8bit = True else: base_model = 'h2oai/h2ogpt-oasst1-512-20b' if is_low_mem: load_8bit = True if is_hf: # must override share if in spaces share = False save_dir = os.getenv('SAVE_DIR', save_dir) # get defaults model_lower = base_model.lower() if not gradio: # force, else not single response like want to look at stream_output = False # else prompt removal can mess up output chat = False placeholder_instruction, placeholder_input, \ stream_output, show_examples, \ prompt_type, temperature, top_p, top_k, num_beams, \ max_new_tokens, min_new_tokens, early_stopping, max_time, \ repetition_penalty, num_return_sequences, \ do_sample, \ src_lang, tgt_lang, \ examples, \ task_info = \ get_generate_params(model_lower, chat, stream_output, show_examples, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample, ) if not gradio: if eval_sharegpt_prompts_only > 0: # override default examples with shareGPT ones for human-level eval purposes only filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json' if not os.path.isfile(filename): os.system( 'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % filename) import json data = json.load(open(filename, 'rt')) # focus on data that starts with human, else likely chopped from other data turn_start = 0 # odd in general data = [x for x in data if len(x['conversations']) > turn_start + 1 and x['conversations'][turn_start]['from'] == 'human' and x['conversations'][turn_start + 1]['from'] == 'gpt'] np.random.seed(eval_sharegpt_prompts_only_seed) example1 = examples[-1] # pick reference example examples = [] responses = [] for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)): assert data[i]['conversations'][turn_start]['from'] == 'human' instruction = data[i]['conversations'][turn_start]['value'] assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt' output = data[i]['conversations'][turn_start + 1]['value'] examplenew = example1.copy() examplenew[0] = instruction examplenew[1] = '' # no input examplenew[2] = '' # no context examples.append(examplenew) responses.append(output) with torch.device("cuda"): # ensure was set right above before examples generated assert not stream_output, "stream_output=True does not make sense with example loop" import time from functools import partial # get score model smodel, stokenizer, sdevice = get_score_model(**locals()) if not eval_sharegpt_as_output: model, tokenizer, device = get_model(**locals()) model_state = [model, tokenizer, device, base_model] fun = partial(evaluate, model_state, debug=debug, chat=chat, save_dir=save_dir) else: assert eval_sharegpt_prompts_only > 0 def get_response(*args, exi=0): # assumes same ordering of examples and responses yield responses[exi] fun = get_response t0 = time.time() score_dump = [] num_examples = len(examples) import matplotlib.pyplot as plt for exi, ex in enumerate(examples): clear_torch_cache() print("") print("START" + "=" * 100) print("Question: %s %s" % (ex[0], ('input=%s' % ex[1] if ex[1] else ''))) print("-" * 105) # fun yields as generator, so have to iterate over it # Also means likely do NOT want --stream_output=True, else would show all generations for res in fun(*tuple(ex), exi=exi): print(res) if smodel: score_with_prompt = False if score_with_prompt: data_point = dict(instruction=ex[0], input=ex[1]) prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) prompt = prompter.generate_prompt(data_point) else: # just raw input and output assert ex[1] in [None, ''] # should be no iinput assert ex[2] in [None, ''] # should be no context prompt = ex[0] cutoff_len = 768 if is_low_mem else 2048 inputs = stokenizer(prompt, res, return_tensors="pt", truncation=True, max_length=cutoff_len) try: score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] except torch.cuda.OutOfMemoryError as e: print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) traceback.print_exc() score = 0.0 clear_torch_cache() except (Exception, RuntimeError) as e: if 'Expected all tensors to be on the same device' in str(e) or \ 'expected scalar type Half but found Float' in str(e) or \ 'probability tensor contains either' in str(e) or \ 'cublasLt ran into an error!' in str(e): print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) traceback.print_exc() score = 0.0 clear_torch_cache() else: raise print("SCORE %s: %s" % (exi, score), flush=True) score_dump.append(ex + [prompt, res, score]) # dump every score in case abort scoring_path = 'scoring' os.makedirs(scoring_path, exist_ok=True) if eval_sharegpt_as_output: used_base_model = 'gpt35' used_lora_weights = '' else: used_base_model = str(base_model.split('/')[-1]) used_lora_weights = str(lora_weights.split('/')[-1]) df_scores = pd.DataFrame(score_dump, columns=eval_func_param_names + ['prompt', 'response', 'score']) filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only, eval_sharegpt_prompts_only_seed, eval_sharegpt_as_output, used_base_model, used_lora_weights) filename = os.path.join(scoring_path, filename) df_scores.to_parquet(filename, index=False) # plot histogram so far plt.figure(figsize=(10, 10)) plt.hist(df_scores['score'], bins=20) score_avg = np.mean(df_scores['score']) score_median = np.median(df_scores['score']) plt.title("Score avg: %s median: %s" % (score_avg, score_median)) plt.savefig(filename.replace('.parquet', '.png')) plt.close() print("END" + "=" * 102) print("") t2 = time.time() print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi))) t1 = time.time() print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples)) return if gradio: go_gradio(**locals()) def get_device(): if torch.cuda.is_available(): device = "cuda" else: raise RuntimeError("only cuda supported") return device def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, gpu_id=0, use_auth_token=False): """ Ensure model gets on correct device :param base_model: :param model_loader: :param load_half: :param model_kwargs: :param reward_type: :param gpu_id: :param use_auth_token: :return: """ with init_empty_weights(): from transformers import AutoConfig config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token) model = AutoModel.from_config( config, ) # NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model # NOTE: Some models require avoiding sharding some layers, # then would pass no_split_module_classes and give list of those layers. device_map = infer_auto_device_map( model, dtype=torch.float16 if load_half else torch.float32, ) if hasattr(model, 'model'): device_map_model = infer_auto_device_map( model.model, dtype=torch.float16 if load_half else torch.float32, ) device_map.update(device_map_model) print('device_map: %s' % device_map, flush=True) if gpu_id >= 0: # FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set. # So avoid for now, just put on first GPU, unless score_model, put on last n_gpus = torch.cuda.device_count() if reward_type: device_map = {'': n_gpus - 1} else: device_map = {'': min(n_gpus - 1, gpu_id)} load_in_8bit = model_kwargs.get('load_in_8bit', False) model_kwargs['device_map'] = device_map if load_in_8bit or not load_half: model = model_loader.from_pretrained( base_model, **model_kwargs, ) else: model = model_loader.from_pretrained( base_model, **model_kwargs, ).half() return model def get_model( load_8bit: bool = False, load_half: bool = True, infer_devices: bool = True, base_model: str = '', tokenizer_base_model: str = '', lora_weights: str = "", gpu_id: int = 0, llama_type: bool = None, reward_type: bool = None, local_files_only: bool = False, resume_download: bool = True, use_auth_token: Union[str, bool] = False, compile: bool = True, **kwargs, ): """ :param load_8bit: load model in 8-bit, not supported by all models :param load_half: load model in 16-bit :param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case) For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches So it is not the default :param base_model: name/path of base model :param tokenizer_base_model: name/path of tokenizer :param lora_weights: name/path :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1) :param llama_type: whether LLaMa type model :param reward_type: reward type model for sequence classification :param local_files_only: use local files instead of from HF :param resume_download: resume downloads from HF :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo :parm compile: whether to compile torch model :param kwargs: :return: """ print("Get %s model" % base_model, flush=True) if lora_weights is not None and lora_weights.strip(): print("Get %s lora weights" % lora_weights, flush=True) device = get_device() if 'gpt2' in base_model.lower(): # RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half load_8bit = False assert base_model.strip(), ( "Please choose a base model with --base_model (CLI) or in Models Tab (gradio)" ) llama_type = llama_type or "llama" in base_model model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type) if not tokenizer_base_model: tokenizer_base_model = base_model if tokenizer_loader is not None and not isinstance(tokenizer_loader, str): tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, ) else: tokenizer = tokenizer_loader if isinstance(tokenizer, str): # already a pipeline, tokenizer_loader is string for task model = model_loader(tokenizer, model=base_model, device=0 if device == "cuda" else -1, torch_dtype=torch.float16) else: assert device == "cuda", "Unsupported device %s" % device model_kwargs = dict(local_files_only=local_files_only, torch_dtype=torch.float16, resume_download=resume_download, use_auth_token=use_auth_token) if 'mbart-' not in base_model.lower(): model_kwargs.update(dict(load_in_8bit=load_8bit, device_map={"": 0} if load_8bit else "auto", )) if 'OpenAssistant/reward-model'.lower() in base_model.lower(): # could put on other GPUs model_kwargs['device_map'] = {"": 0} model_kwargs.pop('torch_dtype', None) if not lora_weights: with torch.device("cuda"): if infer_devices: model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, gpu_id=gpu_id, use_auth_token=use_auth_token) else: if load_half and not load_8bit: model = model_loader.from_pretrained( base_model, **model_kwargs).half() else: model = model_loader.from_pretrained( base_model, **model_kwargs) elif load_8bit: model = model_loader.from_pretrained( base_model, **model_kwargs ) model = PeftModel.from_pretrained( model, lora_weights, torch_dtype=torch.float16, local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, device_map={"": 0}, # seems to be required ) else: with torch.device("cuda"): model = model_loader.from_pretrained( base_model, **model_kwargs ) model = PeftModel.from_pretrained( model, lora_weights, torch_dtype=torch.float16, local_files_only=local_files_only, resume_download=resume_download, use_auth_token=use_auth_token, device_map="auto", ) if load_half: model.half() # unwind broken decapoda-research config if llama_type: model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk model.config.bos_token_id = 1 model.config.eos_token_id = 2 if 'gpt2' in base_model.lower(): # add special tokens that otherwise all share the same id tokenizer.add_special_tokens({'bos_token': '', 'eos_token': '', 'pad_token': ''}) if not isinstance(tokenizer, str): model.eval() if torch.__version__ >= "2" and sys.platform != "win32" and compile: model = torch.compile(model) return model, tokenizer, device def get_score_model(**kwargs): # score model if kwargs.get('score_model') is not None and kwargs.get('score_model').strip(): score_all_kwargs = kwargs.copy() score_all_kwargs['load_8bit'] = False score_all_kwargs['load_half'] = False score_all_kwargs['base_model'] = kwargs.get('score_model').strip() score_all_kwargs['tokenizer_base_model'] = '' score_all_kwargs['lora_weights'] = '' score_all_kwargs['llama_type'] = False score_all_kwargs['compile'] = False smodel, stokenizer, sdevice = get_model(**score_all_kwargs) else: smodel, stokenizer, sdevice = None, None, None return smodel, stokenizer, sdevice def go_gradio(**kwargs): # get default model all_kwargs = kwargs.copy() all_kwargs.update(locals()) if kwargs.get('base_model') and not kwargs['login_mode_if_model0']: model0, tokenizer0, device = get_model(**all_kwargs) else: # if empty model, then don't load anything, just get gradio up model0, tokenizer0, device = None, None, None model_state0 = [model0, tokenizer0, device, kwargs['base_model']] # get score model smodel, stokenizer, sdevice = get_score_model(**all_kwargs) if 'mbart-' in kwargs['model_lower']: instruction_label_nochat = "Text to translate" else: instruction_label_nochat = "Instruction" instruction_label = "You (Shift-Enter or push Submit to send message)" title = 'h2oGPT' if kwargs['verbose']: description = f"""Model {kwargs['base_model']} Instruct dataset. For more information, visit [the project's website](https://github.com/h2oai/h2ogpt). Command: {str(' '.join(sys.argv))} Hash: {get_githash()} """ else: description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
" if is_public: description += """

DISCLAIMERS:

  • The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.
  • """ if kwargs['load_8bit']: description += """
  • Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.
  • """ description += """
  • Conversations may be used to improve h2oGPT. Do not share sensitive information.
  • """ description += """
  • By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).

""" if kwargs['verbose']: task_info_md = f""" ### Task: {kwargs['task_info']}""" else: task_info_md = '' css_code = """footer {visibility: hidden;} body{background:linear-gradient(#f5f5f5,#e5e5e5);} body.dark{background:linear-gradient(#0d0d0d,#333333);}""" from gradio.themes.utils import Color, colors, fonts, sizes if kwargs['h2ocolors']: h2o_yellow = Color( name="yellow", c50="#fffef2", c100="#fff9e6", c200="#ffecb3", c300="#ffe28c", c400="#ffd659", c500="#fec925", c600="#e6ac00", c700="#bf8f00", c800="#a67c00", c900="#664d00", c950="#403000", ) h2o_gray = Color( name="gray", c50="#f2f2f2", c100="#e5e5e5", c200="#cccccc", c300="#b2b2b2", c400="#999999", c500="#7f7f7f", c600="#666666", c700="#4c4c4c", c800="#333333", c900="#191919", c950="#0d0d0d", ) colors_dict = dict(primary_hue=h2o_yellow, secondary_hue=h2o_yellow, neutral_hue=h2o_gray, spacing_size=sizes.spacing_md, radius_size=sizes.radius_md, text_size=sizes.text_md, ) else: colors_dict = dict(primary_hue=colors.indigo, secondary_hue=colors.indigo, neutral_hue=colors.gray, spacing_size=sizes.spacing_md, radius_size=sizes.radius_md, text_size=sizes.text_md, ) import gradio as gr if kwargs['gradio_avoid_processing_markdown']: from gradio_client import utils as client_utils from gradio.components import Chatbot # gradio has issue with taking too long to process input/output for markdown etc. # Avoid for now, allow raw html to render, good enough for chatbot. def _postprocess_chat_messages(self, chat_message: str): if chat_message is None: return None elif isinstance(chat_message, (tuple, list)): filepath = chat_message[0] mime_type = client_utils.get_mimetype(filepath) filepath = self.make_temp_copy_if_needed(filepath) return { "name": filepath, "mime_type": mime_type, "alt_text": chat_message[1] if len(chat_message) > 1 else None, "data": None, # These last two fields are filled in by the frontend "is_file": True, } elif isinstance(chat_message, str): return chat_message else: raise ValueError(f"Invalid message for Chatbot component: {chat_message}") Chatbot._postprocess_chat_messages = _postprocess_chat_messages demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False) callback = gr.CSVLogger() # css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}' # demo = gr.Blocks(theme='gstaff/xkcd', css=css_code) model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] if kwargs['base_model'].strip() not in model_options: lora_options = [kwargs['base_model'].strip()] + model_options lora_options = kwargs['extra_lora_options'] if kwargs['lora_weights'].strip() not in lora_options: lora_options = [kwargs['lora_weights'].strip()] + lora_options # always add in no lora case # add fake space so doesn't go away in gradio dropdown no_lora_str = no_model_str = '[None/Remove]' lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double? # always add in no model case so can free memory # add fake space so doesn't go away in gradio dropdown model_options = [no_model_str] + model_options # transcribe, will be detranscribed before use by evaluate() if not kwargs['lora_weights'].strip(): kwargs['lora_weights'] = no_lora_str if not kwargs['base_model'].strip(): kwargs['base_model'] = no_model_str # transcribe for gradio kwargs['gpu_id'] = str(kwargs['gpu_id']) no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( 'base_model') else no_model_msg output_label0_model2 = no_model_msg with demo: # avoid actual model/tokenizer here or anything that would be bad to deepcopy # https://github.com/gradio-app/gradio/issues/3558 model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']]) model_state2 = gr.State([None, None, None, None]) model_options_state = gr.State([model_options]) lora_options_state = gr.State([lora_options]) gr.Markdown( f"""

{title}

{description} {task_info_md} """) if is_hf: gr.HTML( '''
Duplicate SpaceDuplicate this Space to skip the queue and run in a private space
''') # go button visible if base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") normal_block = gr.Row(visible=not base_wanted) with normal_block: with gr.Tabs(): with gr.Row(): col_nochat = gr.Column(visible=not kwargs['chat']) with col_nochat: # FIXME: for model comparison, and check rest text_output_nochat = gr.Textbox(lines=5, label=output_label0) instruction_nochat = gr.Textbox( lines=4, label=instruction_label_nochat, placeholder=kwargs['placeholder_instruction'], ) iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", placeholder=kwargs['placeholder_input']) submit_nochat = gr.Button("Submit") flag_btn_nochat = gr.Button("Flag") if kwargs['score_model']: if not kwargs['auto_score']: with gr.Column(): score_btn_nochat = gr.Button("Score last prompt & response") score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) else: score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) col_chat = gr.Column(visible=kwargs['chat']) with col_chat: with gr.Row(): text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400) text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style( height=kwargs['height'] or 400) with gr.Row(): with gr.Column(scale=50): instruction = gr.Textbox( lines=4, label=instruction_label, placeholder=kwargs['placeholder_instruction'], ) with gr.Row(): # .style(equal_height=False, equal_width=False): submit = gr.Button(value='Submit').style(full_width=False, size='sm') stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm') with gr.Row(): clear = gr.Button("New Conversation") flag_btn = gr.Button("Flag") if kwargs['score_model']: if not kwargs['auto_score']: # FIXME: For checkbox model2 with gr.Column(): with gr.Row(): score_btn = gr.Button("Score last prompt & response").style( full_width=False, size='sm') score_text = gr.Textbox("Response Score: NA", show_label=False) score_res2 = gr.Row(visible=False) with score_res2: score_btn2 = gr.Button("Score last prompt & response 2").style( full_width=False, size='sm') score_text2 = gr.Textbox("Response Score2: NA", show_label=False) else: score_text = gr.Textbox("Response Score: NA", show_label=False) score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False) retry = gr.Button("Regenerate") undo = gr.Button("Undo") with gr.TabItem("Input/Output"): with gr.Row(): if 'mbart-' in kwargs['model_lower']: src_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['src_lang'], label="Input Language") tgt_lang = gr.Dropdown(list(languages_covered().keys()), value=kwargs['tgt_lang'], label="Output Language") with gr.TabItem("Expert"): with gr.Row(): with gr.Column(): stream_output = gr.components.Checkbox(label="Stream output", value=kwargs['stream_output']) prompt_type = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type", visible=not is_public) prompt_type2 = gr.Dropdown(prompt_types_strings, value=kwargs['prompt_type'], label="Prompt Type Model 2", visible=not is_public and False) do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k", value=kwargs['do_sample']) temperature = gr.Slider(minimum=0, maximum=3, value=kwargs['temperature'], label="Temperature", info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") top_p = gr.Slider(minimum=0, maximum=1, value=kwargs['top_p'], label="Top p", info="Cumulative probability of tokens to sample from") top_k = gr.Slider( minimum=0, maximum=100, step=1, value=kwargs['top_k'], label="Top k", info='Num. tokens to sample from' ) max_beams = 8 if not is_low_mem else 2 num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, value=min(max_beams, kwargs['num_beams']), label="Beams", info="Number of searches for optimal overall probability. " "Uses more GPU memory/compute") max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens'] max_new_tokens = gr.Slider( minimum=1, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", ) min_new_tokens = gr.Slider( minimum=0, maximum=max_max_new_tokens, step=1, value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", ) early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", value=kwargs['early_stopping']) max_max_time = 60 * 5 if not is_low_mem else 60 max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1, value=min(max_max_time, kwargs['max_time']), label="Max. time", info="Max. time to search optimal output.") repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, value=kwargs['repetition_penalty'], label="Repetition Penalty") num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, value=kwargs['num_return_sequences'], label="Number Returns", info="Must be <= num_beams", visible=not is_public) iinput = gr.Textbox(lines=4, label="Input", placeholder=kwargs['placeholder_input'], visible=not is_public) context = gr.Textbox(lines=3, label="System Pre-Context", info="Directly pre-appended without prompt processing", visible=not is_public and not kwargs['chat']) chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], visible=not is_public) with gr.TabItem("Models"): load_msg = "Load-Unload Model/LORA" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" load_msg2 = "Load-Unload Model/LORA 2" if not is_public \ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" compare_checkbox = gr.components.Checkbox(label="Compare Mode", value=False, visible=not is_public) with gr.Row(): n_gpus = torch.cuda.device_count() n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] with gr.Column(): with gr.Row(scale=1): with gr.Column(scale=50): model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", value=kwargs['base_model']) lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) with gr.Column(scale=1): load_model_button = gr.Button(load_msg) model_load8bit_checkbox = gr.components.Checkbox( label="Load 8-bit [Not all models support]", value=kwargs['load_8bit']) model_infer_devices_checkbox = gr.components.Checkbox( label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]", value=kwargs['infer_devices']) model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]", value=kwargs['gpu_id']) model_used = gr.Textbox(label="Current Model", value=kwargs['base_model']) lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) with gr.Row(scale=1): with gr.Column(scale=50): new_model = gr.Textbox(label="New Model HF name/path") new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora']) with gr.Column(scale=1): add_model_button = gr.Button("Add new model name") add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']) col_model2 = gr.Column(visible=False) with col_model2: with gr.Row(scale=1): with gr.Column(scale=50): model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", value=no_model_str) lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", value=no_lora_str, visible=kwargs['show_lora']) with gr.Column(scale=1): load_model_button2 = gr.Button(load_msg2) model_load8bit_checkbox2 = gr.components.Checkbox( label="Load 8-bit 2 [Not all models support]", value=kwargs['load_8bit']) model_infer_devices_checkbox2 = gr.components.Checkbox( label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]", value=kwargs[ 'infer_devices']) model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]", value=kwargs['gpu_id']) # no model/lora loaded ever in model2 by default model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str) lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, visible=kwargs['show_lora']) with gr.TabItem("System"): system_row = gr.Row(visible=not is_public) admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) admin_btn = gr.Button(value="admin", visible=is_public) with system_row: with gr.Column(): system_text = gr.Textbox(label='System Info') system_btn = gr.Button(value='Get System Info') zip_btn = gr.Button("Zip") file_output = gr.File() # Get flagged data zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) zip_btn.click(zip_data1, inputs=None, outputs=file_output) def check_admin_pass(x): return gr.update(visible=x == admin_pass) admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) # Get inputs to evaluate() inputs_list = get_inputs_list(locals(), kwargs['model_lower']) from functools import partial all_kwargs = kwargs.copy() all_kwargs.update(locals()) kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} fun = partial(evaluate, **kwargs_evaluate) fun2 = partial(evaluate, model_state2, **kwargs_evaluate) dark_mode_btn = gr.Button("Dark Mode", variant="primary").style( size="sm", ) dark_mode_btn.click( None, None, None, _js="""() => { if (document.querySelectorAll('.dark').length) { document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark')); } else { document.querySelector('body').classList.add('dark'); } }""", api_name="dark", ) # Control chat and non-chat blocks, which can be independently used by chat checkbox swap def col_nochat_fun(x): return gr.Column.update(visible=not x) def col_chat_fun(x): return gr.Column.update(visible=x) def context_fun(x): return gr.Textbox.update(visible=not x) chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \ .then(col_chat_fun, chat, col_chat) \ .then(context_fun, chat, context) # examples after submit or any other buttons for chat or no chat if kwargs['examples'] is not None and kwargs['show_examples']: gr.Examples(examples=kwargs['examples'], inputs=inputs_list) # Score def score_last_response(*args, nochat=False, model2=False): """ Similar to user() """ args_list = list(args) max_length_tokenize = 512 if is_low_mem else 2048 cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM if not nochat: history = args_list[-1] if history is None: if not model2: # maybe only doing first model, no need to complain print("Bad history in scoring last response, fix for now", flush=True) history = [] if smodel is not None and \ stokenizer is not None and \ sdevice is not None and \ history is not None and len(history) > 0 and \ history[-1] is not None and \ len(history[-1]) >= 2: os.environ['TOKENIZERS_PARALLELISM'] = 'false' question = history[-1][0] answer = history[-1][1] else: return 'Response Score: NA' else: answer = args_list[-1] instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') question = args_list[instruction_nochat_arg_id] question = question[-cutoff_len:] answer = answer[-cutoff_len:] inputs = stokenizer(question, answer, return_tensors="pt", truncation=True, max_length=max_length_tokenize).to(smodel.device) try: score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] except torch.cuda.OutOfMemoryError as e: print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) del inputs traceback.print_exc() clear_torch_cache() return 'Response Score: GPU OOM' except (Exception, RuntimeError) as e: if 'Expected all tensors to be on the same device' in str(e) or \ 'expected scalar type Half but found Float' in str(e) or \ 'probability tensor contains either' in str(e) or \ 'cublasLt ran into an error!' in str(e): print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) traceback.print_exc() clear_torch_cache() return 'Response Score: GPU Error' else: raise os.environ['TOKENIZERS_PARALLELISM'] = 'true' return 'Response Score: {:.1%}'.format(score) if kwargs['score_model']: score_args = dict(fn=score_last_response, inputs=inputs_list + [text_output], outputs=[score_text], ) score_args2 = dict(fn=partial(score_last_response, model2=True), inputs=inputs_list + [text_output2], outputs=[score_text2], ) score_args_nochat = dict(fn=partial(score_last_response, nochat=True), inputs=inputs_list + [text_output_nochat], outputs=[score_text_nochat], ) if not kwargs['auto_score']: score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \ .then(**score_args2, queue=stream_output, api_name='score2') score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output, api_name='score_nochat') def user(*args, undo=False, sanitize_user_prompt=True, model2=False): """ User that fills history for bot :param args: :param undo: :param sanitize_user_prompt: :param model2: :return: """ args_list = list(args) user_message = args_list[0] input1 = args_list[1] context1 = args_list[2] if input1 and not user_message.endswith(':'): user_message1 = user_message + ":" + input1 elif input1: user_message1 = user_message + input1 else: user_message1 = user_message if sanitize_user_prompt: from better_profanity import profanity user_message1 = profanity.censor(user_message1) history = args_list[-1] if undo and history: history.pop() args_list = args_list[:-1] # FYI, even if unused currently if history is None: if not model2: # no need to complain so often unless model1 print("Bad history, fix for now", flush=True) history = [] # ensure elements not mixed across models as output, # even if input is currently same source history = history.copy() if undo: return history else: # FIXME: compare, same history for now return history + [[user_message1, None]] def bot(*args, retry=False): """ bot that consumes history for user input instruction (from input_list) itself is not consumed by bot :param args: :param retry: :return: """ args_list = list(args).copy() history = args_list[-1] # model_state is -2 if retry and history: history.pop() if not history: print("No history", flush=True) return # ensure output will be unique to models history = history.copy() instruction1 = history[-1][0] context1 = '' if kwargs['chat_history'] > 0: prompt_type_arg_id = eval_func_param_names.index('prompt_type') prompt_type1 = args_list[prompt_type_arg_id] chat_arg_id = eval_func_param_names.index('chat') chat1 = args_list[chat_arg_id] context1 = '' for histi in range(len(history) - 1): data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace( '
', '\n') if not context1.endswith('\n'): context1 += '\n' if context1 and not context1.endswith('\n'): context1 += '\n' # ensure if terminates abruptly, then human continues on next line args_list[0] = instruction1 # override original instruction with history from user # only include desired chat history args_list[2] = context1[-kwargs['chat_history']:] model_state1 = args_list[-2] if model_state1[0] is None or model_state1[0] == no_model_str: return args_list = args_list[:-2] fun1 = partial(evaluate, model_state1, **kwargs_evaluate) try: for output in fun1(*tuple(args_list)): bot_message = output history[-1][1] = bot_message yield history except StopIteration: yield history except RuntimeError as e: if "generator raised StopIteration" in str(e): # assume last entry was bad, undo history.pop() yield history raise except Exception as e: # put error into user input history[-1][0] = "Exception: %s" % str(e) yield history raise return # NORMAL MODEL user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), inputs=inputs_list + [text_output], outputs=text_output, ) bot_args = dict(fn=bot, inputs=inputs_list + [model_state] + [text_output], outputs=text_output, ) retry_bot_args = dict(fn=functools.partial(bot, retry=True), inputs=inputs_list + [model_state] + [text_output], outputs=text_output, ) undo_user_args = dict(fn=functools.partial(user, undo=True), inputs=inputs_list + [text_output], outputs=text_output, ) # MODEL2 user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True), inputs=inputs_list + [text_output2], outputs=text_output2, ) bot_args2 = dict(fn=bot, inputs=inputs_list + [model_state2] + [text_output2], outputs=text_output2, ) retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), inputs=inputs_list + [model_state2] + [text_output2], outputs=text_output2, ) undo_user_args2 = dict(fn=functools.partial(user, undo=True), inputs=inputs_list + [text_output2], outputs=text_output2, ) def clear_instruct(): return gr.Textbox.update(value='') if kwargs['auto_score']: # in case 2nd model, consume instruction first, so can clear quickly # bot doesn't consume instruction itself, just history from user, so why works submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \ .then(**user_args2, queue=stream_output, api_name='instruction2') \ .then(clear_instruct, None, instruction) \ .then(**bot_args, api_name='instruction_bot') \ .then(**score_args, api_name='instruction_bot_score') \ .then(**bot_args2, api_name='instruction_bot2') \ .then(**score_args2, api_name='instruction_bot_score2') \ .then(clear_torch_cache) submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \ .then(**user_args2, queue=stream_output, api_name='submit2') \ .then(**bot_args, api_name='submit_bot') \ .then(clear_instruct, None, instruction) \ .then(**score_args, api_name='submit_bot_score') \ .then(**bot_args2, api_name='submit_bot2') \ .then(**score_args2, api_name='submit_bot_score2') \ .then(clear_torch_cache) submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \ .then(**user_args2, queue=stream_output, api_name='retry2') \ .then(clear_instruct, None, instruction) \ .then(**retry_bot_args, api_name='retry_bot') \ .then(**score_args, api_name='retry_bot_score') \ .then(**retry_bot_args2, api_name='retry_bot2') \ .then(**score_args2, api_name='retry_bot_score2') \ .then(clear_torch_cache) submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \ .then(**score_args, api_name='undo_score') \ .then(**undo_user_args2, queue=stream_output, api_name='undo2') \ .then(**score_args2, api_name='undo_score2') \ .then(clear_instruct, None, instruction) else: submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \ .then(**user_args2, queue=stream_output, api_name='instruction2') \ .then(clear_instruct, None, instruction) \ .then(**bot_args, api_name='instruction_bot') \ .then(**bot_args2, api_name='instruction_bot2') \ .then(clear_torch_cache) submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \ .then(**user_args2, queue=stream_output, api_name='submit2') \ .then(clear_instruct, None, instruction) \ .then(**bot_args, api_name='submit_bot') \ .then(**bot_args2, api_name='submit_bot2') \ .then(clear_torch_cache) submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \ .then(**user_args2, queue=stream_output, api_name='retry2') \ .then(clear_instruct, None, instruction) \ .then(**retry_bot_args, api_name='retry_bot') \ .then(**retry_bot_args2, api_name='retry_bot2') \ .then(clear_torch_cache) submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \ .then(**undo_user_args2, queue=stream_output, api_name='undo2') # does both models clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \ .then(lambda: None, None, text_output2, queue=False, api_name='clear2') # FIXME: compare submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list, outputs=text_output_nochat, api_name='submit_nochat') \ .then(**score_args_nochat, api_name='instruction_bot_score_nochat') \ .then(clear_torch_cache) def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): # ensure old model removed from GPU memory if kwargs['debug']: print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) if isinstance(model_state_old[0], str) and model0 is not None: # best can do, move model loaded at first to CPU model0.cpu() if model_state_old[0] is not None and not isinstance(model_state_old[0], str): try: model_state_old[0].cpu() except Exception as e: # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! print("Unable to put model on CPU: %s" % str(e), flush=True) del model_state_old[0] model_state_old[0] = None if model_state_old[1] is not None and not isinstance(model_state_old[1], str): del model_state_old[1] model_state_old[1] = None clear_torch_cache() if kwargs['debug']: print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) if model_name is None or model_name == no_model_str: # no-op if no model, just free memory # no detranscribe needed for model, never go into evaluate lora_weights = no_lora_str return [None, None, None, model_name], model_name, lora_weights, prompt_type_old all_kwargs1 = all_kwargs.copy() all_kwargs1['base_model'] = model_name.strip() all_kwargs1['load_8bit'] = load_8bit all_kwargs1['infer_devices'] = infer_devices all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe model_lower = model_name.strip().lower() if model_lower in inv_prompt_type_to_model_lower: prompt_type1 = inv_prompt_type_to_model_lower[model_lower] else: prompt_type1 = prompt_type_old # detranscribe if lora_weights == no_lora_str: lora_weights = '' all_kwargs1['lora_weights'] = lora_weights.strip() model1, tokenizer1, device1 = get_model(**all_kwargs1) clear_torch_cache() if kwargs['debug']: print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1 def dropdown_prompt_type_list(x): return gr.Dropdown.update(value=x) def chatbot_list(x, model_used_in): return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') load_model_args = dict(fn=load_model, inputs=[model_choice, lora_choice, model_state, prompt_type, model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], outputs=[model_state, model_used, lora_used, prompt_type]) prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) if not is_public: load_model_event = load_model_button.click(**load_model_args) \ .then(**prompt_update_args) \ .then(**chatbot_update_args) \ .then(clear_torch_cache) load_model_args2 = dict(fn=load_model, inputs=[model_choice2, lora_choice2, model_state2, prompt_type2, model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], outputs=[model_state2, model_used2, lora_used2, prompt_type2]) prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) if not is_public: load_model_event2 = load_model_button2.click(**load_model_args2) \ .then(**prompt_update_args2) \ .then(**chatbot_update_args2) \ .then(clear_torch_cache) def dropdown_model_list(list0, x): new_state = [list0[0] + [x]] new_options = [*new_state[0]] return gr.Dropdown.update(value=x, choices=new_options), \ gr.Dropdown.update(value=x, choices=new_options), \ '', new_state add_model_event = add_model_button.click(fn=dropdown_model_list, inputs=[model_options_state, new_model], outputs=[model_choice, model_choice2, new_model, model_options_state]) def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2): new_state = [list0[0] + [x]] new_options = [*new_state[0]] # don't switch drop-down to added lora if already have model loaded x1 = x if model_used1 == no_model_str else lora_used1 x2 = x if model_used2 == no_model_str else lora_used2 return gr.Dropdown.update(value=x1, choices=new_options), \ gr.Dropdown.update(value=x2, choices=new_options), \ '', new_state add_lora_event = add_lora_button.click(fn=dropdown_lora_list, inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2], outputs=[lora_choice, lora_choice2, new_lora, lora_options_state]) go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \ .then(lambda: gr.update(visible=True), None, normal_block) \ .then(**load_model_args).then(**prompt_update_args) def compare_textbox_fun(x): return gr.Textbox.update(visible=x) def compare_column_fun(x): return gr.Column.update(visible=x) def compare_prompt_fun(x): return gr.Dropdown.update(visible=x) compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox") \ .then(compare_column_fun, compare_checkbox, col_model2) \ .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ .then(compare_textbox_fun, compare_checkbox, score_text2) # FIXME: add score_res2 in condition, but do better # callback for logging flagged input/output callback.setup(inputs_list + [text_output], "flagged_data_points") flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, api_name='flag') flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, api_name='flag_nochat') def get_system_info(): return gr.Textbox.update(value=system_info_print()) system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info') # don't pass text_output, don't want to clear output, just stop it # FIXME: have to click once to stop output and second time to stop GPUs going stop_btn.click(lambda: None, None, None, cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3], queue=False, api_name='stop').then(clear_torch_cache) demo.queue(concurrency_count=1) favicon_path = "h2o-logo.svg" demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True) print("Started GUI", flush=True) demo.block_thread() input_args_list = ['model_state'] inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0'] def get_inputs_list(inputs_dict, model_lower): """ map gradio objects in locals() to inputs for evaluate(). :param inputs_dict: :param model_lower: :return: """ inputs_list_names = list(inspect.signature(evaluate).parameters) inputs_list = [] for k in inputs_list_names: if k == 'kwargs': continue if k in input_args_list + inputs_kwargs_list: # these are added via partial, not taken as input continue if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: continue inputs_list.append(inputs_dict[k]) return inputs_list eval_func_param_names = ['instruction', 'iinput', 'context', 'stream_output', 'prompt_type', 'temperature', 'top_p', 'top_k', 'num_beams', 'max_new_tokens', 'min_new_tokens', 'early_stopping', 'max_time', 'repetition_penalty', 'num_return_sequences', 'do_sample', 'chat', 'instruction_nochat', 'iinput_nochat', ] def evaluate( model_state, # START NOTE: Examples must have same order of parameters instruction, iinput, context, stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample, chat, instruction_nochat, iinput_nochat, # END NOTE: Examples must have same order of parameters src_lang=None, tgt_lang=None, debug=False, save_dir=None, hard_stop_list=None, sanitize_bot_response=True, model_state0=None, **kwargs, ): if debug: locals_dict = locals().copy() locals_dict.pop('model_state', None) locals_dict.pop('model_state0', None) print(locals_dict) no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation" if model_state0 is None: # e.g. for no gradio case, set dummy value, else should be set model_state0 = [None, None, None, None] if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str): # try to free-up original model (i.e. list was passed as reference) if model_state0 is not None and model_state0[0] is not None: model_state0[0].cpu() model_state0[0] = None # try to free-up original tokenizer (i.e. list was passed as reference) if model_state0 is not None and model_state0[1] is not None: model_state0[1] = None clear_torch_cache() model, tokenizer, device, base_model = model_state elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None: assert isinstance(model_state[0], str) model, tokenizer, device, base_model = model_state0 else: raise AssertionError(no_model_msg) if base_model is None: raise AssertionError(no_model_msg) assert base_model.strip(), no_model_msg assert model, "Model is missing" assert tokenizer, "Tokenizer is missing" # choose chat or non-chat mode if not chat: instruction = instruction_nochat iinput = iinput_nochat data_point = dict(context=context, instruction=instruction, input=iinput) prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) prompt = prompter.generate_prompt(data_point) if hard_stop_list is None: # acts like undo on user entry and bot response hard_stop_list = [] if isinstance(tokenizer, str): # pipeline if tokenizer == "summarization": key = 'summary_text' else: raise RuntimeError("No such task type %s" % tokenizer) # NOTE: uses max_length only yield model(prompt, max_length=max_new_tokens)[0][key] if 'mbart-' in base_model.lower(): assert src_lang is not None tokenizer.src_lang = languages_covered()[src_lang] if chat: # override, ignore user change num_return_sequences = 1 if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']: if prompt_type == 'human_bot': # encounters = [prompt.count(human) + 1, prompt.count(bot) + 1] # stopping only starts once output is beyond prompt # 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added stop_words = [human, bot, '\n' + human, '\n' + bot] encounters = [1, 2] elif prompt_type == 'instruct_vicuna': # even below is not enough, generic strings and many ways to encode stop_words = [ '### Human:', """ ### Human:""", """ ### Human: """, '### Assistant:', """ ### Assistant:""", """ ### Assistant: """, ] encounters = [1, 2] else: # some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise stop_words = ['### End'] encounters = [1] stop_words_ids = [ tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] # handle single token case stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids] stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0] # avoid padding in front of tokens if tokenizer.pad_token: stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids] # handle fake \n added stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)] # build stopper stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)]) else: stopping_criteria = StoppingCriteriaList() # help to avoid errors like: # RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3 # RuntimeError: expected scalar type Half but found Float # with - 256 max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256 cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens output_smallest = 30 * 4 prompt = prompt[-cutoff_len - output_smallest:] inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_length_tokenize) if debug and len(inputs["input_ids"]) > 0: print('input_ids length', len(inputs["input_ids"][0]), flush=True) input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=float(temperature), top_p=float(top_p), top_k=top_k, num_beams=num_beams, do_sample=do_sample, repetition_penalty=float(repetition_penalty), num_return_sequences=num_return_sequences, renormalize_logits=True, remove_invalid_values=True, **kwargs, ) gen_kwargs = dict(input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, # prompt + new min_new_tokens=min_new_tokens, # prompt + new early_stopping=early_stopping, # False, True, "never" max_time=max_time, stopping_criteria=stopping_criteria, ) if 'gpt2' in base_model.lower(): gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id)) elif 'mbart-' in base_model.lower(): assert tgt_lang is not None tgt_lang = languages_covered()[tgt_lang] gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])) else: gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id)) decoder = functools.partial(tokenizer.decode, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) decoder_raw = functools.partial(tokenizer.decode, skip_special_tokens=False, clean_up_tokenization_spaces=True, ) with torch.no_grad(): # decoded tokenized prompt can deviate from prompt due to special characters inputs_decoded = decoder(input_ids[0]) inputs_decoded_raw = decoder_raw(input_ids[0]) if inputs_decoded == prompt: # normal pass elif inputs_decoded.lstrip() == prompt.lstrip(): # sometimes extra space in front, make prompt same for prompt removal prompt = inputs_decoded elif inputs_decoded_raw == prompt: # some models specify special tokens that are part of normal prompt, so can't skip them inputs_decoded_raw = inputs_decoded decoder = decoder_raw else: print("WARNING: Special characters in prompt", flush=True) if stream_output: def generate(callback=None, **kwargs): # re-order stopping so Stream first and get out all chunks before stop for other reasons stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy() kwargs['stopping_criteria'] = StoppingCriteriaList() kwargs['stopping_criteria'].append(Stream(func=callback)) for stopping_criteria1 in stopping_criteria0: kwargs['stopping_criteria'].append(stopping_criteria1) try: model.generate(**kwargs) except torch.cuda.OutOfMemoryError as e: print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), flush=True) if kwargs['input_ids'] is not None: kwargs['input_ids'].cpu() kwargs['input_ids'] = None traceback.print_exc() clear_torch_cache() return except (Exception, RuntimeError) as e: if 'Expected all tensors to be on the same device' in str(e) or \ 'expected scalar type Half but found Float' in str(e) or \ 'probability tensor contains either' in str(e) or \ 'cublasLt ran into an error!' in str(e): print( "GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), flush=True) traceback.print_exc() clear_torch_cache() if raise_generate_gpu_exceptions: raise return else: raise decoded_output = None for output in CallbackToGenerator(generate, callback=None, **gen_kwargs): decoded_output = decoder(output) if output[-1] in [tokenizer.eos_token_id]: if debug: print("HIT EOS", flush=True) break if any(ele in decoded_output for ele in hard_stop_list): raise StopIteration yield prompter.get_response(decoded_output, prompt=inputs_decoded, sanitize_bot_response=sanitize_bot_response) if save_dir and decoded_output: save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) else: outputs = model.generate(**gen_kwargs) outputs = [decoder(s) for s in outputs.sequences] yield prompter.get_response(outputs, prompt=inputs_decoded, sanitize_bot_response=sanitize_bot_response) if save_dir and outputs and len(outputs) >= 1: decoded_output = prompt + outputs[0] save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) def get_generate_params(model_lower, chat, stream_output, show_examples, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample): use_defaults = False use_default_examples = True examples = [] task_info = f"{prompt_type}" if model_lower: print(f"Using Model {model_lower}", flush=True) else: print("No model defined yet", flush=True) min_new_tokens = min_new_tokens if min_new_tokens is not None else 0 early_stopping = early_stopping if early_stopping is not None else False max_time_defaults = 60 * 3 max_time = max_time if max_time is not None else max_time_defaults if not prompt_type and model_lower in inv_prompt_type_to_model_lower: prompt_type = inv_prompt_type_to_model_lower[model_lower] if show_examples is None: if chat: show_examples = False else: show_examples = True summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face""" if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower: placeholder_instruction = summarize_example1 placeholder_input = "" use_defaults = True use_default_examples = False examples += [ [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, 1.0, 1, False]] task_info = "Summarization" elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower: placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" placeholder_input = "" use_defaults = True use_default_examples = True task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)" elif 'mbart-' in model_lower: placeholder_instruction = "The girl has long hair." placeholder_input = "" use_defaults = True use_default_examples = False examples += [ [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, 1.0, 1, False]] elif 'gpt2' in model_lower: placeholder_instruction = "The sky is" placeholder_input = "" prompt_type = prompt_type or 'plain' use_default_examples = True # some will be odd "continuations" but can be ok examples += [ [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, 1.0, 1, False]] task_info = "Auto-complete phrase, code, etc." use_defaults = True else: if chat: placeholder_instruction = "Enter a question or imperative." else: placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter." placeholder_input = "" if model_lower: prompt_type = prompt_type or 'human_bot' else: prompt_type = '' examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "", stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1, False]] task_info = "No task" if prompt_type == 'instruct': task_info = "Answer question or follow imperative as instruction with optionally input." elif prompt_type == 'plain': task_info = "Auto-complete phrase, code, etc." elif prompt_type == 'human_bot': if chat: task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)" else: task_info = "Ask question/imperative (input concatenated with instruction)" # revert to plain if still nothing prompt_type = prompt_type or 'plain' if use_defaults: temperature = 1.0 if temperature is None else temperature top_p = 1.0 if top_p is None else top_p top_k = 40 if top_k is None else top_k num_beams = num_beams or 1 max_new_tokens = max_new_tokens or 128 repetition_penalty = repetition_penalty or 1.07 num_return_sequences = min(num_beams, num_return_sequences or 1) do_sample = False if do_sample is None else do_sample else: temperature = 0.1 if temperature is None else temperature top_p = 0.75 if top_p is None else top_p top_k = 40 if top_k is None else top_k if chat: num_beams = num_beams or 1 else: num_beams = num_beams or 4 max_new_tokens = max_new_tokens or 256 repetition_penalty = repetition_penalty or 1.07 num_return_sequences = min(num_beams, num_return_sequences or 1) do_sample = False if do_sample is None else do_sample params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample] if use_default_examples: examples += [ ["Translate English to French", "Good morning"] + params_list, ["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list, ["Explain in detailed list, all the best practices for coding in python.", ''] + params_list, [ "Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.", ''] + params_list, ['Translate to German: My name is Arthur', ''] + params_list, ["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list, ['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.', ''] + params_list, ['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list, ['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list, ["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list, [ "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?", ''] + params_list, ['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list, [ 'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', ''] + params_list, ["""def area_of_rectangle(a: float, b: float): \"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list, ["""# a function in native python: def mean(a): return sum(a)/len(a) # the same function using numpy: import numpy as np def mean(a):""", ''] + params_list, ["""X = np.random.randn(100, 100) y = np.random.randint(0, 1, 100) # fit random forest classifier with 20 estimators""", ''] + params_list, ] src_lang = "English" tgt_lang = "Russian" # adjust examples if non-chat mode if not chat: # move to correct position for example in examples: example[eval_func_param_names.index('instruction_nochat')] = example[ eval_func_param_names.index('instruction')] example[eval_func_param_names.index('instruction')] = '' example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')] example[eval_func_param_names.index('iinput')] = '' return placeholder_instruction, placeholder_input, \ stream_output, show_examples, \ prompt_type, temperature, top_p, top_k, num_beams, \ max_new_tokens, min_new_tokens, early_stopping, max_time, \ repetition_penalty, num_return_sequences, \ do_sample, \ src_lang, tgt_lang, \ examples, \ task_info def languages_covered(): # https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)""" covered = covered.split(', ') covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered} return covered def test_test_prompt(prompt_type='instruct', data_point=0): example_data_point = example_data_points[data_point] example_data_point.pop('output', None) return generate_prompt(example_data_point, prompt_type, False, False) if __name__ == "__main__": print(""" WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B' python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B' # generate without lora weights, no prompt python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain' python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq' # OpenChatKit settings: python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False python generate.py --base_model='t5-large' --prompt_type='simple_instruct' python generate.py --base_model='philschmid/bart-large-cnn-samsum' python generate.py --base_model='philschmid/flan-t5-base-samsum' python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt' python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28' must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot' python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-256-6.9b """, flush=True) fire.Fire(main)