import inspect import warnings from typing import Optional, Tuple, Union import torch from ...models import UNet2DModel, VQModel from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput from ...schedulers import DDIMScheduler class LDMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: vqvae ([`VQModel`]): Vector-quantized (VQ) Model to encode and decode images to and from latent representations. unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latens. """ def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler): super().__init__() scheduler = scheduler.set_format("pt") self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, eta: float = 0.0, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" Args: batch_size (`int`, *optional*, defaults to 1): Number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ if "torch_device" in kwargs: device = kwargs.pop("torch_device") warnings.warn( "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." " Consider using `pipe.to(torch_device)` instead." ) # Set device as before (to be removed in 0.3.0) if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.to(device) latents = torch.randn( (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), generator=generator, ) latents = latents.to(self.device) self.scheduler.set_timesteps(num_inference_steps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta for t in self.progress_bar(self.scheduler.timesteps): # predict the noise residual noise_prediction = self.unet(latents, t).sample # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample # decode the image latents with the VAE image = self.vqvae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)