''' * Copyright (c) 2022, salesforce.com, inc. * All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause * By Junnan Li * Based on timm code base * https://github.com/rwightman/pytorch-image-models/tree/master/timm ''' import torch import torch.nn as nn import torch.nn.functional as F from functools import partial from timm.models.vision_transformer import _cfg, PatchEmbed from timm.models.registry import register_model from timm.models.layers import trunc_normal_, DropPath from timm.models.helpers import named_apply, adapt_input_conv from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper class Mlp(nn.Module): """ MLP as used in Vision Transformer, MLP-Mixer and related networks """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_gradients = None self.attention_map = None def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def forward(self, x, register_hook=False): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) if register_hook: self.save_attention_map(attn) attn.register_hook(self.save_attn_gradients) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if use_grad_checkpointing: self.attn = checkpoint_wrapper(self.attn) self.mlp = checkpoint_wrapper(self.mlp) def forward(self, x, register_hook=False): x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, use_grad_checkpointing=False, ckpt_layer=0): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer) ) for i in range(depth)]) self.norm = norm_layer(embed_dim) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x, register_blk=-1): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed[:,:x.size(1),:] x = self.pos_drop(x) for i,blk in enumerate(self.blocks): x = blk(x, register_blk==i) x = self.norm(x) return x @torch.jit.ignore() def load_pretrained(self, checkpoint_path, prefix=''): _load_weights(self, checkpoint_path, prefix) @torch.no_grad() def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): """ Load weights from .npz checkpoints for official Google Brain Flax implementation """ import numpy as np def _n2p(w, t=True): if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: w = w.flatten() if t: if w.ndim == 4: w = w.transpose([3, 2, 0, 1]) elif w.ndim == 3: w = w.transpose([2, 0, 1]) elif w.ndim == 2: w = w.transpose([1, 0]) return torch.from_numpy(w) w = np.load(checkpoint_path) if not prefix and 'opt/target/embedding/kernel' in w: prefix = 'opt/target/' if hasattr(model.patch_embed, 'backbone'): # hybrid backbone = model.patch_embed.backbone stem_only = not hasattr(backbone, 'stem') stem = backbone if stem_only else backbone.stem stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) if not stem_only: for i, stage in enumerate(backbone.stages): for j, block in enumerate(stage.blocks): bp = f'{prefix}block{i + 1}/unit{j + 1}/' for r in range(3): getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) if block.downsample is not None: block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) else: embed_conv_w = adapt_input_conv( model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) model.patch_embed.proj.weight.copy_(embed_conv_w) model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) if pos_embed_w.shape != model.pos_embed.shape: pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) model.pos_embed.copy_(pos_embed_w) model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) for i, block in enumerate(model.blocks.children()): block_prefix = f'{prefix}Transformer/encoderblock_{i}/' mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) block.attn.qkv.weight.copy_(torch.cat([ _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) block.attn.qkv.bias.copy_(torch.cat([ _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) for r in range(2): getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): # interpolate position embedding embedding_size = pos_embed_checkpoint.shape[-1] num_patches = visual_encoder.patch_embed.num_patches num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) if orig_size!=new_size: # class_token and dist_token are kept unchanged extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2)) return new_pos_embed else: return pos_embed_checkpoint