import gradio as gr import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import pickle # Load the trained model with open('knn_model.pkl', 'rb') as file: kn_class = pickle.load(file) # Load the fitted MinMaxScaler with open('scaler.pkl', 'rb') as file: scaler = pickle.load(file) def predict_fraud(cc_num, gender, lat, long, city_pop, unix_time, amount): # Handle categorical feature 'Gender' gender = 1 if gender == 'M' else 0 # Scale the amount feature amount_scaled = scaler.transform([[amount]])[0][0] # Create input dataframe for the model input_data = pd.DataFrame({ 'cc_num': [cc_num], 'Gender': [gender], 'lat': [lat], 'long': [long], 'city_pop': [city_pop], 'unix_time': [unix_time], 'Amount_Scaled': [amount_scaled] }) # Predict using the loaded model prediction = kn_class.predict(input_data) # Return the result return 'Fraudulent Transaction' if prediction[0] == 1 else 'Legitimate Transaction' # Define examples, including one example of fraud examples = [ [1234567890123456, 'M', 40.712776, -74.005974, 8398748, 1614575732, 100.0], # Legitimate transaction [2345678901234567, 'F', 34.052235, -118.243683, 3990456, 1614575832, 200.0], # Legitimate transaction [3456789012345678, 'M', 37.774929, -122.419416, 883305, 1614575932, 5000.0] # Fraudulent transaction ] # Define Gradio interface interface = gr.Interface( fn=predict_fraud, inputs=[ gr.Number(label="Credit Card Number"), gr.Radio(['M', 'F'], label="Gender"), gr.Number(label="Latitude"), gr.Number(label="Longitude"), gr.Number(label="City Population"), gr.Number(label="Unix Time"), gr.Number(label="Transaction Amount") ], outputs="text", title="Fraud Detection Application", description="Enter the transaction details to predict if it is fraudulent or legitimate.", examples=examples ) # Launch the interface interface.launch(inline=False)