import streamlit as st import seaborn as sns import matplotlib.pyplot as plt import pandas as pd # Load data def load_data(): df = pd.read_csv("processed_data.csv") # Replace with your dataset return df # Create Streamlit app def app(): # Title for the app st.title("Pizza Sales Data Analysis Dashboard by Saif Khan") df = load_data() total_orders = df['order_id'].nunique() #function which can calculate the number of unique values total_revenue = df['total_price'].sum() #function which can sum the column most_popular_size = df['pizza_size'].value_counts().idxmax() #function which can get the maximum value most_frequent_category = df['pizza_category'].value_counts().idxmax() #function which can count of value of each product total_pizzas_sold = df['quantity'].sum() st.sidebar.header("Key Metrics") st.sidebar.metric("Total Revenue", f"${total_revenue:,.2f}") st.sidebar.metric("Most Popular Size", most_popular_size) st.sidebar.metric("Most Popular Category", most_frequent_category) st.sidebar.metric("Total Pizzas Sold", total_pizzas_sold) st.sidebar.metric("Total Orders", total_orders) plots = [ {"title": "Top Selling Pizzas (by Quantity)", "x": "pizza_name", "y": "quantity", "top": 5}, #Write the appropriiate column as per the title given {"title": "Quantity of Pizzas Sold by Category and Time of the Day", "x": "time_of_day", "hue": "pizza_category"}, #Write the appropriiate column as per the title given {"title": "Quantity of Pizzas Sold by Size and Time of the Day", "x": "time_of_day", "hue": "pizza_size"}, #Write the appropriiate column as per the title given {"title": "Monthly Revenue Trends by Pizza Category", "x": "order_month", "y": "total_price", "hue": "pizza_category", "estimator": "sum", "marker": "o"}, #Write the appropriiate column as per the title given ] for plot in plots: st.header(plot["title"]) fig, ax = plt.subplots() if "Top Selling Pizzas" in plot["title"]: data_aux = df.groupby(plot["x"])[plot["y"]].sum().reset_index().sort_values(by=plot["y"], ascending=False).head(plot["top"]) ax.bar(data_aux[plot["x"]].values.tolist(), data_aux[plot["y"]].values.tolist()) ax.tick_params(axis='x', rotation=45) if "Quantity of Pizzas" in plot["title"]: sns.countplot(data=df, x=plot["x"], hue=plot["hue"], ax=ax) if "Monthly Revenue" in plot["title"]: sns.lineplot(data=df, x=plot["x"], y=plot["y"], hue=plot["hue"], estimator=plot["estimator"], errorbar=None, marker=plot["marker"], ax=ax) ax.set_xlabel(" ".join(plot["x"].split("_")).capitalize()) if "y" in plot.keys(): ax.set_ylabel(" ".join(plot["y"].split("_")).capitalize()) else: ax.set_ylabel("Quantity") ax.legend(bbox_to_anchor=(1,1)) st.pyplot(fig) if __name__ == "__main__": app()