from sklearn.pipeline import make_pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression import joblib X = ["i love this", "i hate this", "amazing", "terrible", "good", "bad"] y = ["positive", "negative", "positive", "negative", "positive", "negative"] model = make_pipeline(TfidfVectorizer(), LogisticRegression()) model.fit(X, y) joblib.dump(model, "model/classifier.pkl") print("Dummy model saved.")