""" Helper functions mainly for multilingual text image customization. Acknowledgement: Codes here are heavily borrowed from TextFLUX: https://github.com/yyyyyxie/textflux. """ import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont def generate_prompt(words): words_str = ', '.join(f"'{word}'" for word in words) prompt_template = ( "The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. " "[IMAGE1] is a template image rendering the text, with the words {words}; " "[IMAGE2] shows the text content {words} naturally and correspondingly integrated into the image." ) return prompt_template.format(words=words_str) prompt_template2 = ( "The pair of images highlights some white words on a black background, as well as their style on a real-world scene image. " "[IMAGE1] is a template image rendering the text, with the words; " "[IMAGE2] shows the text content naturally and correspondingly integrated into the image." ) def run_multilingual_inference(model, image_input, mask_input, reference_input, texts, num_steps=30, guidance_scale=30, seed=42, num_images=1): # Resize. width, height = image_input.size new_width = (width // 32) * 32 new_height = (height // 32) * 32 image_input = image_input.convert("RGB").resize((new_width, new_height)) mask_input = mask_input.convert("RGB").resize((new_width, new_height)) texts = [i.strip() for i in texts.split('\n')] rendered_text = render_glyph_multi(image_input, mask_input, texts) combined_image = Image.fromarray(np.hstack((np.array(rendered_text), np.array(image_input)))) combined_mask = Image.fromarray( np.hstack((np.array(Image.new("RGB", image_input.size, (0, 0, 0))), np.array(mask_input)))) prompt = generate_prompt(texts) print("Final prompt:", prompt) all_generated_images = [] for i in range(num_images): res = model.generate( image=combined_image, mask_image=combined_mask, ref_image=reference_input, prompt=prompt_template2, prompt_2=prompt, scale=1.0, guidance_scale=guidance_scale, num_inference_steps=num_steps, width=combined_image.width, height=combined_image.height, seed=seed + i, )[0] all_generated_images.append(res) return all_generated_images def insert_spaces(text, num_spaces): """ Insert a specified number of spaces between each character to adjust spacing during text rendering. """ if len(text) <= 1: return text return (' ' * num_spaces).join(list(text)) def draw_glyph2( font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True, scale_factor=2, rotate_resample=Image.BICUBIC, downsample_resample=Image.Resampling.LANCZOS ): """ Render tilted/curved text within a specified region (defined by polygon): - First upscale (supersample), then rotate, then downsample to ensure high quality; - Dynamically adjust font size and whether to insert spaces between characters based on the region's shape. Return the final downsampled RGBA numpy array to the target dimensions (height, width). """ big_w = width * scale_factor big_h = height * scale_factor # Upscale polygon coordinates big_polygon = polygon * scale_factor * scale rect = cv2.minAreaRect(big_polygon.astype(np.float32)) box = cv2.boxPoints(rect) box = np.intp(box) w, h = rect[1] angle = rect[2] if angle < -45: angle += 90 angle = -angle if w < h: angle += 90 vert = False if (abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng): _w = max(box[:, 0]) - min(box[:, 0]) _h = max(box[:, 1]) - min(box[:, 1]) if _h >= _w: vert = True angle = 0 # Create large image and temporary white background image big_img = Image.new("RGBA", (big_w, big_h), (0, 0, 0, 0)) tmp = Image.new("RGB", big_img.size, "white") tmp_draw = ImageDraw.Draw(tmp) _, _, _tw, _th = tmp_draw.textbbox((0, 0), text, font=font) if _th == 0: text_w = 0 else: w_f, h_f = float(w), float(h) text_w = min(w_f, h_f) * (_tw / _th) if text_w <= max(w, h): if len(text) > 1 and not vert and add_space: for i in range(1, 100): text_sp = insert_spaces(text, i) _, _, tw2, th2 = tmp_draw.textbbox((0, 0), text_sp, font=font) if th2 != 0: if min(w, h) * (tw2 / th2) > max(w, h): break text = insert_spaces(text, i - 1) font_size = min(w, h) * 0.80 else: shrink = 0.75 if vert else 0.85 if text_w != 0: font_size = min(w, h) / (text_w / max(w, h)) * shrink else: font_size = min(w, h) * 0.80 new_font = font.font_variant(size=int(font_size)) left, top, right, bottom = new_font.getbbox(text) text_width = right - left text_height = bottom - top # Create transparent text rendering layer layer = Image.new("RGBA", big_img.size, (0, 0, 0, 0)) draw_layer = ImageDraw.Draw(layer) cx, cy = rect[0] if not vert: draw_layer.text( (cx - text_width // 2, cy - text_height // 2 - top), text, font=new_font, fill=(255, 255, 255, 255) ) else: _w_ = max(box[:, 0]) - min(box[:, 0]) x_s = min(box[:, 0]) + _w_ // 2 - text_height // 2 y_s = min(box[:, 1]) for c in text: draw_layer.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255)) _, _t, _, _b = new_font.getbbox(c) y_s += _b rotated_layer = layer.rotate( angle, expand=True, center=(cx, cy), resample=rotate_resample ) xo = int((big_img.width - rotated_layer.width) // 2) yo = int((big_img.height - rotated_layer.height) // 2) big_img.paste(rotated_layer, (xo, yo), rotated_layer) final_img = big_img.resize((width, height), downsample_resample) final_np = np.array(final_img) return final_np def render_glyph_multi(original, computed_mask, texts): """ For each independent region in computed_mask: - Extract region positions using contours and sort them from top to bottom, left to right; - Call draw_glyph2 to render corresponding text in each region (supports tilt/curve); - Overlay the rendering results of each region onto a transparent black background image, and output the final rendered image. """ mask_np = np.array(computed_mask.convert("L")) contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) regions = [] for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) if w * h < 50: continue regions.append((x, y, w, h, cnt)) regions = sorted(regions, key=lambda r: (r[1], r[0])) render_img = Image.new("RGBA", original.size, (0, 0, 0, 0)) try: base_font = ImageFont.truetype("resources/Arial-Unicode-Regular.ttf", 40) except: base_font = ImageFont.load_default() for i, region in enumerate(regions): if i >= len(texts): break text = texts[i].strip() if not text: continue cnt = region[4] polygon = cnt.reshape(-1, 2) rendered_np = draw_glyph2( font=base_font, text=text, polygon=polygon, vertAng=10, scale=1, width=original.size[0], height=original.size[1], add_space=True, scale_factor=1, rotate_resample=Image.BICUBIC, downsample_resample=Image.Resampling.LANCZOS ) rendered_img = Image.fromarray(rendered_np, mode="RGBA") render_img = Image.alpha_composite(render_img, rendered_img) return render_img.convert("RGB")