import os import gradio as gr import whisper from gtts import gTTS import io from groq import Groq GROQ_API_KEY = "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" # Initialize the Groq client client = Groq(api_key=GROQ_API_KEY) # Load the Whisper model model = whisper.load_model("base") # You can choose other models like "small", "medium", "large" def process_audio(file_path): try: # Load the audio file audio = whisper.load_audio(file_path) # Transcribe the audio using Whisper result = model.transcribe(audio) text = result["text"] # Generate a response using Groq chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": text}], model="llama3-8b-8192", # Replace with the correct model if necessary ) # Access the response using dot notation response_message = chat_completion.choices[0].message.content.strip() # Convert the response text to speech tts = gTTS(response_message) response_audio_io = io.BytesIO() tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object response_audio_io.seek(0) # Save audio to a file to ensure it's generated correctly with open("response.mp3", "wb") as audio_file: audio_file.write(response_audio_io.getvalue()) # Return the response text and the path to the saved audio file return response_message, "response.mp3" except Exception as e: return f"An error occurred: {e}", None iface = gr.Interface( fn=process_audio, inputs=gr.Audio(type="filepath"), # Use type="filepath" outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")], live=True ) iface.launch()