Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from datasets import load_dataset | |
from transformers import TrainingArguments, Trainer | |
# Load LLAMA3 8B model | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B") | |
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B") | |
# Load datasets | |
python_codes_dataset = load_dataset('flytech/python-codes-25k', split='train') | |
streamlit_issues_dataset = load_dataset("andfanilo/streamlit-issues") | |
streamlit_docs_dataset = load_dataset("sai-lohith/streamlit_docs") | |
# Combine datasets | |
combined_dataset = python_codes_dataset['text'] + streamlit_issues_dataset['text'] + streamlit_docs_dataset['text'] | |
# Define training arguments | |
training_args = TrainingArguments( | |
per_device_train_batch_size=2, | |
num_train_epochs=3, | |
logging_dir='./logs', | |
output_dir='./output', | |
overwrite_output_dir=True, | |
report_to="none" # Disable logging to avoid cluttering output | |
) | |
# Define training function | |
def tokenize_function(examples): | |
return tokenizer(examples["text"]) | |
def group_texts(examples): | |
# Concatenate all texts. | |
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} | |
total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can customize this part to your needs. | |
total_length = (total_length // tokenizer.max_len) * tokenizer.max_len | |
# Split by chunks of max_len. | |
result = { | |
k: [t[i : i + tokenizer.max_len] for i in range(0, total_length, tokenizer.max_len)] | |
for k, t in concatenated_examples.items() | |
} | |
return result | |
# Tokenize dataset | |
tokenized_datasets = combined_dataset.map(tokenize_function, batched=True, num_proc=4) | |
# Group texts into chunks of max_len | |
tokenized_datasets = tokenized_datasets.map( | |
group_texts, | |
batched=True, | |
num_proc=4, | |
) | |
# Train the model | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets, | |
tokenizer=tokenizer, | |
) | |
trainer.train() | |
# Save the trained model | |
trainer.save_model("PyStreamlitGPT") | |