import streamlit as st import pickle import pandas as pd def recommend(movie): movie_index = movies[movies['title']== movie].index[0] distances = similarity[movie_index] movies_list = sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[1:6] recommended_movies = [] for i in movies_list: movie_id = i[0] recommended_movies.append(movies.iloc[i[0]].title) return recommended_movies movie_dict = pickle.load(open('movie_dict.pkl','rb')) movies = pd.DataFrame(movie_dict) similarity = pickle.load(open('similarity.pkl','rb')) st.title('Movie Recommender System') option = st.selectbox('Which Movie recommendation would you like to have?', movies['title'].values) if st.button('Recommend'): recommemdations = recommend(option) for i in recommemdations: st.write(i)