import gradio as gr import numpy as np import tensorflow as tf import tensorflow_hub as hub loaded_model = tf.keras.models.load_model( ('CatDogmodel2.h5'), custom_objects={'KerasLayer':hub.KerasLayer} ) def model(image): im_scaled = image/255 im_reshape = np.reshape(im_scaled,[1,160,160,3]) pred = loaded_model.predict(im_reshape) pred_label = np.argmax(pred) if (pred_label == 0): return "The Image is of a Dog." if (pred_label == 1): return "The Image is of a Cat." image = gr.inputs.Image(shape=(160,160)) css_code='body{background-image:url("https://cdn.shopify.com/s/files/1/0017/4024/2996/articles/the-magic-of-black-cats-dogs-188729.png?v=1606316714");}' iface = gr.Interface(fn=model, inputs=image, outputs='text', css=css_code) iface.launch(debug=True)