import numpy as np import random import torch import torch.nn as nn from models.common import Conv, DWConv from utils.google_utils import attempt_download class CrossConv(nn.Module): # Cross Convolution Downsample def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): # ch_in, ch_out, kernel, stride, groups, expansion, shortcut super(CrossConv, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, (1, k), (1, s)) self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) self.add = shortcut and c1 == c2 def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class Sum(nn.Module): # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, n, weight=False): # n: number of inputs super(Sum, self).__init__() self.weight = weight # apply weights boolean self.iter = range(n - 1) # iter object if weight: self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights def forward(self, x): y = x[0] # no weight if self.weight: w = torch.sigmoid(self.w) * 2 for i in self.iter: y = y + x[i + 1] * w[i] else: for i in self.iter: y = y + x[i + 1] return y class MixConv2d(nn.Module): # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): super(MixConv2d, self).__init__() groups = len(k) if equal_ch: # equal c_ per group i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(groups)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * groups a = np.eye(groups + 1, groups, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) self.bn = nn.BatchNorm2d(c2) self.act = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) class Ensemble(nn.ModuleList): # Ensemble of models def __init__(self): super(Ensemble, self).__init__() def forward(self, x, augment=False): y = [] for module in self: y.append(module(x, augment)[0]) # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 1) # nms ensemble return y, None # inference, train output class ORT_NMS(torch.autograd.Function): '''ONNX-Runtime NMS operation''' @staticmethod def forward(ctx, boxes, scores, max_output_boxes_per_class=torch.tensor([100]), iou_threshold=torch.tensor([0.45]), score_threshold=torch.tensor([0.25])): device = boxes.device batch = scores.shape[0] num_det = random.randint(0, 100) batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device) idxs = torch.arange(100, 100 + num_det).to(device) zeros = torch.zeros((num_det,), dtype=torch.int64).to(device) selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous() selected_indices = selected_indices.to(torch.int64) return selected_indices @staticmethod def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold): return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold) class TRT_NMS(torch.autograd.Function): '''TensorRT NMS operation''' @staticmethod def forward( ctx, boxes, scores, background_class=-1, box_coding=1, iou_threshold=0.45, max_output_boxes=100, plugin_version="1", score_activation=0, score_threshold=0.25, ): batch_size, num_boxes, num_classes = scores.shape num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32) det_boxes = torch.randn(batch_size, max_output_boxes, 4) det_scores = torch.randn(batch_size, max_output_boxes) det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32) return num_det, det_boxes, det_scores, det_classes @staticmethod def symbolic(g, boxes, scores, background_class=-1, box_coding=1, iou_threshold=0.45, max_output_boxes=100, plugin_version="1", score_activation=0, score_threshold=0.25): out = g.op("TRT::EfficientNMS_TRT", boxes, scores, background_class_i=background_class, box_coding_i=box_coding, iou_threshold_f=iou_threshold, max_output_boxes_i=max_output_boxes, plugin_version_s=plugin_version, score_activation_i=score_activation, score_threshold_f=score_threshold, outputs=4) nums, boxes, scores, classes = out return nums, boxes, scores, classes class ONNX_ORT(nn.Module): '''onnx module with ONNX-Runtime NMS operation.''' def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None): super().__init__() self.device = device if device else torch.device("cpu") self.max_obj = torch.tensor([max_obj]).to(device) self.iou_threshold = torch.tensor([iou_thres]).to(device) self.score_threshold = torch.tensor([score_thres]).to(device) self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=torch.float32, device=self.device) def forward(self, x): boxes = x[:, :, :4] conf = x[:, :, 4:5] scores = x[:, :, 5:] scores *= conf boxes @= self.convert_matrix max_score, category_id = scores.max(2, keepdim=True) dis = category_id.float() * self.max_wh nmsbox = boxes + dis max_score_tp = max_score.transpose(1, 2).contiguous() selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold) X, Y = selected_indices[:, 0], selected_indices[:, 2] selected_boxes = boxes[X, Y, :] selected_categories = category_id[X, Y, :].float() selected_scores = max_score[X, Y, :] X = X.unsqueeze(1).float() return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1) class ONNX_TRT(nn.Module): '''onnx module with TensorRT NMS operation.''' def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None): super().__init__() assert max_wh is None self.device = device if device else torch.device('cpu') self.background_class = -1, self.box_coding = 1, self.iou_threshold = iou_thres self.max_obj = max_obj self.plugin_version = '1' self.score_activation = 0 self.score_threshold = score_thres def forward(self, x): boxes = x[:, :, :4] conf = x[:, :, 4:5] scores = x[:, :, 5:] scores *= conf num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding, self.iou_threshold, self.max_obj, self.plugin_version, self.score_activation, self.score_threshold) return num_det, det_boxes, det_scores, det_classes class End2End(nn.Module): '''export onnx or tensorrt model with NMS operation.''' def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None): super().__init__() device = device if device else torch.device('cpu') assert isinstance(max_wh,(int)) or max_wh is None self.model = model.to(device) self.model.model[-1].end2end = True self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device) self.end2end.eval() def forward(self, x): x = self.model(x) x = self.end2end(x) return x def attempt_load(weights, map_location=None): # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: attempt_download(w) ckpt = torch.load(w, map_location=map_location) # load model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model # Compatibility updates for m in model.modules(): if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: m.inplace = True # pytorch 1.7.0 compatibility elif type(m) is nn.Upsample: m.recompute_scale_factor = None # torch 1.11.0 compatibility elif type(m) is Conv: m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if len(model) == 1: return model[-1] # return model else: print('Ensemble created with %s\n' % weights) for k in ['names', 'stride']: setattr(model, k, getattr(model[-1], k)) return model # return ensemble