# Importing necessary modules from Flask to create the web application from flask import Flask, request, render_template # Importing additional necessary libraries import numpy as np # For numerical operations import pandas as pd # For data manipulation and creating DataFrame objects # Importing custom modules: CustomData and PredictPipeline from the 'src.pipeline.predict_pipeline' module from src.pipeline.predict_pipeline import CustomData, PredictPipeline # Initializing the Flask application app = Flask(__name__) # Defining the route for the homepage of the web application @app.route('/') def index(): # Rendering the 'index.html' template when the root URL is accessed return render_template('home.html') # Defining the route for prediction, with both GET and POST methods allowed @app.route('/predictdata', methods=['GET', 'POST']) def predict_datapoint(): # If the request method is GET, render 'home.html' if request.method == 'GET': return render_template('home.html') else: try: # Capture the form data (ensure form field names match these keys) data = CustomData( gender=request.form.get('gender'), race_ethnicity=request.form.get('ethnicity'), parental_level_of_education=request.form.get('parental_level_of_education'), lunch=request.form.get('lunch'), test_preparation_course=request.form.get('test_preparation_course'), reading_score=float(request.form.get('reading_score')), # Ensuring correct casting writing_score=float(request.form.get('writing_score')) # Ensuring correct casting ) # Convert the collected form data into a pandas DataFrame pred_df = data.get_data_as_data_frame() print(f"Input DataFrame: \n{pred_df}") # Initialize the prediction pipeline predict_pipeline = PredictPipeline() # Make the prediction results = predict_pipeline.predict(pred_df) print(f"Prediction Result: {results}") # Render 'home.html' and display the prediction result return render_template('home.html', results=results[0]) except Exception as e: print(f"Error during prediction: {e}") # If any error occurs, render the home page with an error message return render_template('home.html', error="An error occurred during prediction. Please check your input.") # Run the Flask app if __name__ == "__main__": # Running the app on host 0.0.0.0 (accessible from any device in the network), debug mode ON for development app.run(host="0.0.0.0")