import pandas as pd import PIL from PIL import Image from PIL import ImageDraw import gradio as gr import torch import easyocr torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/english.png', 'english.png') torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/chinese.jpg', 'chinese.jpg') torch.hub.download_url_to_file('https://github.com/JaidedAI/EasyOCR/raw/master/examples/japanese.jpg', 'japanese.jpg') torch.hub.download_url_to_file('https://i.imgur.com/mwQFd7G.jpeg', 'Hindi.jpeg') def draw_boxes(image, bounds, color='yellow', width=2): draw = ImageDraw.Draw(image) for bound in bounds: p0, p1, p2, p3 = bound[0] draw.line([*p0, *p1, *p2, *p3, *p0], fill=color, width=width) return image def inference(img, lang): reader = easyocr.Reader(lang) bounds = reader.readtext(img.name) im = PIL.Image.open(img.name) draw_boxes(im, bounds) im.save('result.jpg') return ['result.jpg', pd.DataFrame(bounds).iloc[: , 1:]] title = 'Image To Optical Character Recognition' description = 'Multilingual OCR which works conveniently on all devices in multiple languages.' article = "

" examples = [['english.png',['en']],['chinese.jpg',['ch_sim', 'en']],['japanese.jpg',['ja', 'en']],['Hindi.jpeg',['hi', 'en']]] css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" choices = [ "ch_sim", "ch_tra", "de", "en", "es", "ja", "hi", "ru" ] gr.Interface( inference, [gr.inputs.Image(type='file', label='Input'),gr.inputs.CheckboxGroup(choices, type="value", default=['en'], label='language')], [gr.outputs.Image(type='file', label='Output'), gr.outputs.Dataframe(headers=['text', 'confidence'])], title=title, description=description, article=article, examples=examples, css=css, enable_queue=True ).launch(debug=True)