import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from PyPDF2 import PdfReader import torch # Load IBM Granite model (use a smaller one if needed, e.g., granite-3.0-3b-instruct) model_name = "ibm-granite/granite-3.0-8b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") # Global variable for PDF context pdf_context = "" def upload_pdf(file): global pdf_context if file is None: return "No file uploaded." reader = PdfReader(file) pdf_context = "" for page in reader.pages: pdf_context += page.extract_text() + "\n" return "PDF uploaded and text extracted successfully!" def chat(message, history): # Build messages with history and PDF context messages = [{"role": "system", "content": f"You are a helpful assistant. Answer based on this context: {pdf_context}"}] for user_msg, assistant_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Apply chat template and generate input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=300, temperature=0.7) response = tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True) return response # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Basic PDF Q&A Chat with IBM Granite") with gr.Row(): pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"]) upload_btn = gr.Button("Upload PDF") status = gr.Textbox(label="Status") chat_interface = gr.ChatInterface( fn=chat, title="Ask questions about the PDF" ) upload_btn.click(upload_pdf, inputs=pdf_input, outputs=status) demo.launch()