Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
# In[4]: | |
import requests | |
import pandas as pd | |
from io import BytesIO | |
from bs4 import BeautifulSoup | |
# URL of the website to scrape | |
url = "https://www.ireland.ie/en/india/newdelhi/services/visas/processing-times-and-decisions/" | |
# Headers to mimic a browser request | |
headers = { | |
"User-Agent": ( | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 " | |
"(KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36" | |
) | |
} | |
# Send an HTTP GET request to the website | |
response = requests.get(url, headers=headers) | |
# Check if the request was successful | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Find all anchor tags | |
links = soup.find_all('a') | |
# Search for the link that contains the specific text | |
file_url = None | |
for link in links: | |
link_text = link.get_text(strip=True) | |
if "Visa decisions made from 1 January 2024 to" in link_text: | |
file_url = link.get('href') | |
break | |
if file_url: | |
# Make the link absolute if it's relative | |
if not file_url.startswith('http'): | |
file_url = requests.compat.urljoin(url, file_url) | |
###print(f"Found link: {file_url}") | |
# Download the file into memory | |
file_response = requests.get(file_url, headers=headers) | |
if file_response.status_code == 200: | |
ods_file = BytesIO(file_response.content) | |
# Read the .ods file into a DataFrame | |
try: | |
df = pd.read_excel(ods_file, engine='odf') | |
# Step 1: Drop unnecessary columns ("Unnamed: 0" and "Unnamed: 1") | |
df = df.drop(columns=["Unnamed: 0", "Unnamed: 1"]) | |
# Step 2: Find the index where data starts with "Application Number" | |
header_row_index = df[df['Unnamed: 2'] == 'Application Number'].index[0] | |
# Step 3: Set new headers and skip the rows before actual data | |
df.columns = df.iloc[header_row_index] | |
df = df[header_row_index + 1:].reset_index(drop=True) | |
# Step 4: Rename the columns for clarity | |
df.columns = ['Application Number', 'Decision'] | |
# Step 5: Drop any rows with all NaN values (optional cleanup) | |
df = df.dropna(how='all') | |
# Remove the download and display part | |
except Exception as e: | |
print("Error reading the .ods file:", e) | |
else: | |
print("Failed to download the file. Status code:", file_response.status_code) | |
else: | |
print("The specified link was not found.") | |
else: | |
print(f"Failed to retrieve the webpage. Status code: {response.status_code}") | |
# In[ ]: | |
# In[ ]: | |