import transformers import torch import torchvision from transformers import TrainingArguments, Trainer from transformers import ViTImageProcessor from transformers import ViTForImageClassification from torch.utils.data import DataLoader from datasets import load_dataset from torchvision.transforms import (CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor) from transformers import ViTImageProcessor, ViTForImageClassification from PIL import Image import torch import torch.nn.functional as F import time import gradio as gr device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v2",local_files_only=True) model = ViTForImageClassification.from_pretrained("ViT_LCZs_v2",local_files_only=True).to(device) def predict(image): inputs = processor(images=image, return_tensors="pt").to(device) outputs = model(**inputs) logits = outputs.logits predicted_class_prob = F.softmax(logits, dim=-1).detach().cpu().numpy().max() predicted_class_idx = logits.argmax(-1).item() label = model.config.id2label[predicted_class_idx].split(",")[0] time.sleep(2) return {label: float(predicted_class_prob)} gr.Interface(predict, gr.Image(type="pil"), "label").launch()