import os os.system("python -m pip install --upgrade pip") os.system("pip uninstall -y gradio") os.system("pip install gradio==4.1.2") import gradio as gr from backend import * with gr.Blocks() as demo: gr.Markdown( """ # Aerial Image Segmentation An instance segmentation demo for identifying boundaries of buildings and trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone """ ) with gr.Row(equal_height=True): with gr.Column(): image_input = gr.components.Image(type="pil", label="Input Image") with gr.Column(): mode_dropdown = gr.Dropdown(choices=["Trees", "Buildings", "Both"], label="Detection Mode", value="Both") color_mode_select = gr.components.Radio(choices=["Black/white", "Random", "Segmentation"], label="Color Mode", value="Segmentation") # split tree and building into two rows side by side tree_row, building_row , lcz_row = gr.Row(), gr.Row(), gr.Row() # tree_col, building_col = gr.Column(elem_id="tree_col"), gr.Column(elem_id="building_col") with tree_row as tree_options: tree_version_dropdown = gr.Dropdown(choices=list_cfg_file_versions("tree_model_weights"), label="Tree Detection Version", value="treev2", visible=True, interactive=True) tree_pth_dropdown = gr.Dropdown(choices=list_pth_files_in_directory("tree_model_weights", "v2"), label="Select a tree model file", visible=True, interactive=True) tree_threshold_slider = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label='Set confidence threshold "%" for trees', visible=True, interactive=True) with building_row as building_options: building_version_dropdown = gr.Dropdown(choices=list_cfg_file_versions("building_model_weights"), label="Building Detection Version", value="buildingv1", visible=True, interactive=True) building_pth_dropdown = gr.Dropdown(choices=list_pth_files_in_directory("building_model_weights", "v1"), label="Select a building model file", visible=True, interactive=True) building_threshold_slider = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label='Set confidence threshold "%" for buildings', visible=True, interactive=True) with lcz_row as lcz_options: lcz_version_dropdown = gr.Dropdown(choices=["lczv1"], label="LCZ Classification Version", value="lczv1", visible=True, interactive=True) lcz_pth_dropdown = gr.Dropdown(choices=list_pth_files_in_directory("lcz_model_weights", "lcz_v1"), label="Select a tree model file", visible=True, interactive=True) lcz_threshold_slider = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label='Set confidence threshold "%" for trees', visible=True, interactive=True) # mode_dropdown.change(update_visibility, inputs=[mode_dropdown], outputs=[tree_version_dropdown, tree_pth_dropdown, tree_threshold_slider, building_version_dropdown, building_pth_dropdown, building_threshold_slider]) mode_dropdown.change(update_row_visibility, inputs=[mode_dropdown], outputs=[tree_row, building_row, lcz_row]) tree_version_dropdown.change(update_path_options, inputs=[tree_version_dropdown], outputs=[tree_pth_dropdown]) building_version_dropdown.change(update_path_options, inputs=[building_version_dropdown], outputs=[building_pth_dropdown]) lcz_version_dropdown.change(update_path_options, inputs=[lcz_version_dropdown], outputs=[lcz_pth_dropdown]) output_image = gr.components.Image(type="pil", label="Output Image") run_model = gr.Button("Upload Image and Run Model") run_model.click(visualize_image, inputs=[image_input, mode_dropdown, tree_threshold_slider, building_threshold_slider, lcz_threshold_slider, color_mode_select, tree_version_dropdown, tree_pth_dropdown, building_version_dropdown, building_pth_dropdown, lcz_version_dropdown, lcz_pth_dropdown], outputs=[output_image]) demo.launch()