""" tree-segmentation Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees. """ import os import cv2 os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") from transformers import DetrFeatureExtractor, DetrForSegmentation from PIL import Image import gradio as gr import numpy as np import torch import torchvision import detectron2 # import some common detectron2 utilities import itertools import seaborn as sns from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.utils.visualizer import ColorMode from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.checkpoint import DetectionCheckpointer cfg = get_cfg() cfg.merge_from_file("model_weights/treev1_cfg.yaml") cfg.MODEL.DEVICE='cpu' cfg.MODEL.WEIGHTS = "model_weights/treev1_best.pth" cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 def segment_image(im): cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.25 predictor = DefaultPredictor(cfg) im = np.array(im) outputs = predictor(im) v = Visualizer(im[:, :, ::-1], scale=0.5, instance_mode=ColorMode.IMAGE_BW ) print(len(outputs["instances"])," trees detected.") out = v.draw_instance_predictions(outputs["instances"].to("cpu")) return Image.fromarray(out.get_image()[:, :, ::-1]) # gradio components """ gr_slider_confidence = gr.inputs.Slider(0,1,.1,.7, label='Set confidence threshold % for masks') """ # gradio outputs inputs = gr.inputs.Image(type="pil", label="Input Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "Tree Segmentation" description = "An instance segmentation demo for identifying trees in aerial images using DETR (End-to-End Object Detection) model with MaskRCNN-101 backbone" # Create user interface and launch gr.Interface(segment_image, inputs = inputs, outputs = outputs, title = title, description = description).launch(debug=True)