""" tree-segmentation Proof of concept showing effectiveness of a fine tuned instance segmentation model for detecting trees. """ import os import cv2 os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") from transformers import DetrFeatureExtractor, DetrForSegmentation from PIL import Image import gradio as gr import numpy as np import torch import torchvision import detectron2 # import some common detectron2 utilities import itertools import seaborn as sns from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.utils.visualizer import ColorMode from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.checkpoint import DetectionCheckpointer from detectron2.utils.visualizer import ColorMode from detectron2.structures import Instances # Model for trees tree_cfg = get_cfg() tree_cfg.merge_from_file("tree_model_weights/tree_cfg.yml") tree_cfg.MODEL.DEVICE='cpu' tree_cfg.MODEL.WEIGHTS = "tree_model_weights/treev1_best.pth" tree_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 tree_predictor = DefaultPredictor(tree_cfg) # Model for buildings building_cfg = get_cfg() building_cfg.merge_from_file("building_model_weight/buildings_poc_cfg.yml") building_cfg.MODEL.DEVICE='cpu' building_cfg.MODEL.WEIGHTS = "building_model_weight/model_final.pth" building_cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8 building_predictor = DefaultPredictor(building_cfg) # A function that runs the buildings model on an given image and confidence threshold def segment_building(im, confidence_threshold): building_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold outputs = building_predictor(im) building_instances = outputs["instances"].to("cpu") return building_instances # A function that runs the trees model on an given image and confidence threshold def segment_tree(im, confidence_threshold): tree_cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_threshold outputs = tree_predictor(im) tree_instances = outputs["instances"].to("cpu") return tree_instances # Function to map strings to color mode def map_color_mode(color_mode): if color_mode == "Black/white": return ColorMode.IMAGE_BW elif color_mode == "Random": return ColorMode.IMAGE elif color_mode == "Segmentation": return ColorMode.SEGMENTATION def visualize_image(im, mode="BOTH", tree_threshold=0.7, building_threshold=0.7, color_mode=ColorMode.SEGMENTATION): im = np.array(im) color_mode = map_color_mode(color_mode) if mode == "Trees": instances = segment_tree(im, tree_threshold) elif mode == "Buildings": instances = segment_building(im, building_threshold) elif mode == "Both": tree_instances = segment_tree(im, tree_threshold) building_instances = segment_building(im, building_threshold) instances = Instances.cat([tree_instances, building_instances]) meta = MetadataCatalog.get("predict") visualizer = Visualizer(im[:, :, ::-1], metadata=meta, scale=0.5, instance_mode=color_mode) dataset_names = MetadataCatalog.list() print(dataset_names) metadata = MetadataCatalog.get(dataset_names[0]) print("metadata", type(metadata), metadata) print('metadata.get("thing_classes")', type(metadata.get("thing_classes")), metadata.get("thing_classes")) # category_names = metadata.get("thing_classes") # visualizer = Visualizer(im[:, :, ::-1], # metadata=metadata, # scale=0.5, # instance_mode=color_mode) # # in the visualizer, add category label names to detected instances # for instance in instances: # label = category_names[instance["category_id"]] # visualizer.draw_text(label, instance["bbox"][:2]) output_image = visualizer.draw_instance_predictions(instances) return Image.fromarray(output_image.get_image()[:, :, ::-1])