""" Simple Working Version Of Job_Spy in Streamlit """ import csv from jobspy import scrape_jobs import streamlit as st import pandas as pd st.title("Job-Scrapper") site_name = st.multiselect( "Select Job Sites", ["indeed", "linkedin", "zip_recruiter", "glassdoor", "google"], default=["indeed", "linkedin"] ) search_term = st.text_input("Search Term", "software engineer") location = st.text_input("Location", "San Francisco, CA") results_wanted = st.number_input("Number of Results", min_value=1, max_value=100, value=20) hours_old = st.number_input("How many hours old?", min_value=1, max_value=168, value=72) country_indeed = st.text_input("Country (for Indeed)", "USA") if st.button("scrape jobs"): jobs = scrape_jobs( site_name=site_name, search_term=search_term, google_search_term= f"{search_term} jobs near {location}", location=location, results_wanted= results_wanted, hours_old=hours_old, country_indeed=country_indeed, # linkedin_fetch_description=True # gets more info such as description, direct job url (slower) # proxies=["208.195.175.46:65095", "208.195.175.45:65095", "localhost"], ) if len(jobs) > 0: st.success(f"Found {len(jobs)} jobs") # Display job data in a table st.dataframe(jobs) else: st.warning("No jobs found") # print(f"Found {len(jobs)} jobs") # print(jobs.head()) # jobs.to_csv("jobs.csv", quoting=csv.QUOTE_NONNUMERIC, escapechar="\\", index=False) # to_excel