import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base_model_id = "HooshvareLab/gpt2-fa" lora_model_id = "SEDNA-AI/sedna-gpt2-lora" tokenizer = AutoTokenizer.from_pretrained(base_model_id) base_model = AutoModelForCausalLM.from_pretrained(base_model_id) model = PeftModel.from_pretrained(base_model, lora_model_id) def chat(user_input): prompt = f"سوال: {user_input}\nپاسخ:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=100, temperature=0.7, do_sample=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split("پاسخ:")[-1].strip() iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="SEDNA Chatbot") iface.launch()