import gradio as gr import pandas as pd from datasets import load_dataset import numpy as np gender_labels = ['man', 'non-binary', 'woman', 'no_gender_specified', ] ethnicity_labels = ['African-American', 'American_Indian', 'Black', 'Caucasian', 'East_Asian', 'First_Nations', 'Hispanic', 'Indigenous_American', 'Latino', 'Latinx', 'Multiracial', 'Native_American', 'Pacific_Islander', 'South_Asian', 'Southeast_Asian', 'White', 'no_ethnicity_specified'] models = ['DallE', 'SD_14', 'SD_2'] nos = [1,2,3,4,5,6,7,8,9,10] index = np.load("indexes/knn_10752_65.npy") ds = load_dataset("SDBiaseval/identities", split="train") def get_nearest_64(gender, ethnicity, model, no): df = ds.remove_columns(["image","image_path"]).to_pandas() ix = df.loc[(df['ethnicity'] == ethnicity) & (df['gender'] == gender) & (df['no'] == no) & (df['model'] == model)].index[0] image = ds.select([index[ix][0]])["image"][0] neighbors = ds.select(index[ix][1:]) neighbor_images = neighbors["image"] neighbor_captions = [caption.split("/")[-1] for caption in neighbors["image_path"]] return image, list(zip(neighbor_images, neighbor_captions)) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gender = gr.Radio(gender_labels, label="Gender label") model = gr.Radio(models, label="Model") no = gr.Radio(nos, label="Image number") with gr.Column(): ethnicity = gr.Radio(ethnicity_labels, label="Ethnicity label") button = gr.Button(value="Get nearest neighbors") with gr.Row(): image = gr.Image() gallery = gr.Gallery().style(grid=8) button.click(get_nearest_64, inputs=[gender, ethnicity, model, no], outputs=[image, gallery]) demo.launch()