import os os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1' from typing import IO import zipfile import json import io from typing import * from pathlib import Path import re import numpy as np import cv2 from .tools import timeit LEGACY_SEGFORMER_CLASSES = [ 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth', 'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car', 'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column', 'signboard', 'chest of drawers', 'counter', 'sand', 'sink', 'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path', 'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door', 'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove', 'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar', 'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower', 'chandelier', 'awning', 'streetlight', 'booth', 'television receiver', 'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van', 'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything', 'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank', 'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake', 'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce', 'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass', 'clock', 'flag' ] LEGACY_SEGFORMER_LABELS = {k: i for i, k in enumerate(LEGACY_SEGFORMER_CLASSES)} def write_rgbd_zip( file: Union[IO, os.PathLike], image: Union[np.ndarray, bytes], depth: Union[np.ndarray, bytes], mask: Union[np.ndarray, bytes], segmentation_mask: Union[np.ndarray, bytes] = None, segmentation_labels: Union[Dict[str, int], bytes] = None, intrinsics: np.ndarray = None, normal: np.ndarray = None, normal_mask: np.ndarray = None, meta: Union[Dict[str, Any], bytes] = None, *, image_quality: int = 95, depth_type: Literal['linear', 'log', 'disparity'] = 'linear', depth_format: Literal['png', 'exr'] = 'png', depth_max_dynamic_range: float = 1e4, png_compression: int = 7 ): """ Write RGBD data as zip archive containing the image, depth, mask, segmentation_mask, and meta data. In the zip file there will be: - `meta.json`: The meta data as a JSON file. - `image.jpg`: The RGB image as a JPEG file. - `depth.png/exr`: The depth map as a PNG or EXR file, depending on the `depth_type`. - `mask.png` (optional): The mask as a uint8 PNG file. - `segmentation_mask.png` (optional): The segformer mask as a uint8/uint16 PNG file. You can provided those data as np.ndarray or bytes. If you provide them as np.ndarray, they will be properly processed and encoded. If you provide them as bytes, they will be written as is, assuming they are already encoded. """ if meta is None: meta = {} elif isinstance(meta, bytes): meta = json.loads(meta.decode()) if isinstance(image, bytes): image_bytes = image elif isinstance(image, np.ndarray): image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes() if isinstance(depth, bytes): depth_bytes = depth elif isinstance(depth, np.ndarray): meta['depth_type'] = depth_type if depth_type == 'linear': if depth.dtype == np.float16: depth_format = 'exr' depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])[1].tobytes() elif np.issubdtype(depth.dtype, np.floating): depth_format = 'exr' depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes() elif depth.dtype in [np.uint8, np.uint16]: depth_format = 'png' depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes() elif depth_type == 'log': depth_format = 'png' depth = depth.astype(np.float32) near = max(depth[mask].min(), 1e-3) far = min(depth[mask].max(), near * depth_max_dynamic_range) depth = ((np.log(depth.clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65535).astype(np.uint16) depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes() meta['depth_near'] = float(near) meta['depth_far'] = float(far) elif depth_type == 'disparity': depth_format = 'png' depth = depth.astype(np.float32) depth = 1 / (depth + 1e-12) depth = (depth / depth[mask].max()).clip(0, 1) if np.unique(depth) < 200: depth = (depth * 255).astype(np.uint8) else: depth = (depth * 65535).astype(np.uint16) depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes() if isinstance(mask, bytes): mask_bytes = mask elif isinstance(mask, np.ndarray): mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes() if segmentation_mask is not None: if isinstance(segmentation_mask, bytes): segmentation_mask_bytes = segmentation_mask else: segmentation_mask_bytes = cv2.imencode('.png', segmentation_mask)[1].tobytes() assert segmentation_labels is not None, "You provided a segmentation mask, but not the corresponding labels." if isinstance(segmentation_labels, bytes): segmentation_labels = json.loads(segmentation_labels) meta['segmentation_labels'] = segmentation_labels if intrinsics is not None: meta['intrinsics'] = intrinsics.tolist() if normal is not None: if isinstance(normal, bytes): normal_bytes = normal elif isinstance(normal, np.ndarray): normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16) normal = cv2.cvtColor(normal, cv2.COLOR_RGB2BGR) normal_bytes = cv2.imencode('.png', normal, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes() if normal_mask is None: normal_mask = np.ones(image.shape[:2], dtype=bool) normal_mask_bytes = cv2.imencode('.png', normal_mask.astype(np.uint8) * 255)[1].tobytes() meta_bytes = meta if isinstance(meta, bytes) else json.dumps(meta).encode() with zipfile.ZipFile(file, 'w') as z: z.writestr('meta.json', meta_bytes) z.writestr('image.jpg', image_bytes) z.writestr(f'depth.{depth_format}', depth_bytes) z.writestr('mask.png', mask_bytes) if segmentation_mask is not None: z.writestr('segmentation_mask.png', segmentation_mask_bytes) if normal is not None: z.writestr('normal.png', normal_bytes) z.writestr('normal_mask.png', normal_mask_bytes) def read_rgbd_zip(file: Union[str, Path, IO], return_bytes: bool = False) -> Dict[str, Union[np.ndarray, Dict[str, Any], bytes]]: """ Read an RGBD zip file and return the image, depth, mask, segmentation_mask, intrinsics, and meta data. ### Parameters: - `file: Union[str, Path, IO]` The file path or file object to read from. - `return_bytes: bool = False` If True, return the image, depth, mask, and segmentation_mask as raw bytes. ### Returns: - `Tuple[Dict[str, Union[np.ndarray, Dict[str, Any]]], Dict[str, bytes]]` A dictionary containing: (If missing, the value will be None; if return_bytes is True, the value will be bytes) - `image`: RGB numpy.ndarray of shape (H, W, 3). - `depth`: float32 numpy.ndarray of shape (H, W). - `mask`: bool numpy.ndarray of shape (H, W). - `segformer_mask`: uint8 numpy.ndarray of shape (H, W). - `intrinsics`: float32 numpy.ndarray of shape (3, 3). - `meta`: Dict[str, Any]. """ # Load & extract archive with zipfile.ZipFile(file, 'r') as z: meta = z.read('meta.json') if not return_bytes: meta = json.loads(z.read('meta.json')) image = z.read('image.jpg') if not return_bytes: image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) depth_name = next(s for s in z.namelist() if s.startswith('depth')) depth = z.read(depth_name) if not return_bytes: depth = cv2.imdecode(np.frombuffer(z.read(depth_name), np.uint8), cv2.IMREAD_UNCHANGED) if 'mask.png' in z.namelist(): mask = z.read('mask.png') if not return_bytes: mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0 else: mask = None if 'segformer_mask.png' in z.namelist(): # NOTE: Legacy support for segformer_mask.png segmentation_mask = z.read('segformer_mask.png') segmentation_labels = None if not return_bytes: segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED) segmentation_labels = LEGACY_SEGFORMER_LABELS elif 'segmentation_mask.png' in z.namelist(): segmentation_mask = z.read('segmentation_mask.png') segmentation_labels = None if not return_bytes: segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED) segmentation_labels = meta['segmentation_labels'] else: segmentation_mask = None segmentation_labels = None if 'normal.png' in z.namelist(): normal = z.read('normal.png') if not return_bytes: normal = cv2.imdecode(np.frombuffer(z.read('normal.png'), np.uint8), cv2.IMREAD_UNCHANGED) normal = cv2.cvtColor(normal, cv2.COLOR_BGR2RGB) normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0] normal = normal / np.linalg.norm(normal, axis=-1, keepdims=True) if 'normal_mask.png' in z.namelist(): normal_mask = z.read('normal_mask.png') normal_mask = cv2.imdecode(np.frombuffer(normal_mask, np.uint8), cv2.IMREAD_UNCHANGED) > 0 else: normal_mask = np.ones(image.shape[:2], dtype=bool) else: normal, normal_mask = None, None # recover linear depth if not return_bytes: if mask is None: mask = np.ones(image.shape[:2], dtype=bool) if meta['depth_type'] == 'linear': depth = depth.astype(np.float32) mask = mask & (depth > 0) elif meta['depth_type'] == 'log': near, far = meta['depth_near'], meta['depth_far'] if depth.dtype == np.uint16: depth = depth.astype(np.float32) / 65535 elif depth.dtype == np.uint8: depth = depth.astype(np.float32) / 255 depth = near ** (1 - depth) * far ** depth mask = mask & ~np.isnan(depth) elif meta['depth_type'] == 'disparity': mask = mask & (depth > 0) if depth.dtype == np.uint16: depth = depth.astype(np.float32) / 65535 elif depth.dtype == np.uint8: depth = depth.astype(np.float32) / 255 depth = 1 / (depth + 1e-12) # intrinsics if not return_bytes and 'intrinsics' in meta: intrinsics = np.array(meta['intrinsics'], dtype=np.float32) else: intrinsics = None # depth unit if not return_bytes and 'depth_unit' in meta: depth_unit_str = meta['depth_unit'] if r := re.match(r'([\d.]*)(\w*)', depth_unit_str): digits, unit = r.groups() depth_unit = float(digits or 1) * {'m': 1, 'cm': 0.01, 'mm': 0.001}[unit] else: depth_unit = None else: depth_unit = None return_dict = { 'image': image, 'depth': depth, 'mask': mask, 'segmentation_mask': segmentation_mask, 'segmentation_labels': segmentation_labels, 'normal': normal, 'normal_mask': normal_mask, 'intrinsics': intrinsics, 'depth_unit': depth_unit, 'meta': meta, } return_dict = {k: v for k, v in return_dict.items() if v is not None} return return_dict def write_rgbxyz(file: Union[IO, Path], image: np.ndarray, points: np.ndarray, mask: np.ndarray = None, image_quality: int = 95): if isinstance(image, bytes): image_bytes = image elif isinstance(image, np.ndarray): image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes() if isinstance(points, bytes): points_bytes = points elif isinstance(points, np.ndarray): points_bytes = cv2.imencode('.exr', points.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes() if mask is None: mask = np.ones(image.shape[:2], dtype=bool) if isinstance(mask, bytes): mask_bytes = mask elif isinstance(mask, np.ndarray): mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes() is_archive = hasattr(file, 'write') or Path(file).suffix == '.zip' if is_archive: with zipfile.ZipFile(file, 'w') as z: z.writestr('image.jpg', image_bytes) z.writestr('points.exr', points_bytes) if mask is not None: z.writestr('mask.png', mask_bytes) else: file = Path(file) file.mkdir(parents=True, exist_ok=True) with open(file / 'image.jpg', 'wb') as f: f.write(image_bytes) with open(file / 'points.exr', 'wb') as f: f.write(points_bytes) if mask is not None: with open(file / 'mask.png', 'wb') as f: f.write(mask_bytes) def read_rgbxyz(file: Union[IO, str, Path]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Dict[str, Any]]: is_archive = hasattr(file, 'read') or Path(file).suffix == '.zip' if is_archive: with zipfile.ZipFile(file, 'r') as z: image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR) points = cv2.imdecode(np.frombuffer(z.read('points.exr'), np.uint8), cv2.IMREAD_UNCHANGED) if 'mask.png' in z.namelist(): mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0 else: mask = np.ones(image.shape[:2], dtype=bool) else: file = Path(file) file.mkdir(parents=True, exist_ok=True) image = cv2.imread(str(file / 'image.jpg'), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) points = cv2.imread(str(file / 'points.exr'), cv2.IMREAD_UNCHANGED) if (file /'mask.png').exists(): mask = cv2.imread(str(file / 'mask.png'), cv2.IMREAD_UNCHANGED) > 0 else: mask = np.ones(image.shape[:2], dtype=bool) return image, points, mask def save_glb( save_path: Union[str, os.PathLike], vertices: np.ndarray, faces: np.ndarray, vertex_uvs: np.ndarray, texture: np.ndarray, ): import trimesh import trimesh.visual from PIL import Image trimesh.Trimesh( vertices=vertices, faces=faces, visual = trimesh.visual.texture.TextureVisuals( uv=vertex_uvs, material=trimesh.visual.material.PBRMaterial( baseColorTexture=Image.fromarray(texture), metallicFactor=0.5, roughnessFactor=1.0 ) ), process=False ).export(save_path) def save_ply( save_path: Union[str, os.PathLike], vertices: np.ndarray, faces: np.ndarray, vertex_colors: np.ndarray, ): import trimesh import trimesh.visual from PIL import Image trimesh.Trimesh( vertices=vertices, faces=faces, vertex_colors=vertex_colors, process=False ).export(save_path)