import torch import torch.nn.functional as F from typing import * from ._helpers import batched __all__ = [ 'triangulate', 'compute_face_normal', 'compute_face_angles', 'compute_vertex_normal', 'compute_vertex_normal_weighted', 'remove_unreferenced_vertices', 'remove_corrupted_faces', 'merge_duplicate_vertices', 'subdivide_mesh_simple', 'compute_face_tbn', 'compute_vertex_tbn', 'laplacian', 'laplacian_smooth_mesh', 'taubin_smooth_mesh', 'laplacian_hc_smooth_mesh', ] def triangulate( faces: torch.Tensor, vertices: torch.Tensor = None, backslash: bool = None ) -> torch.Tensor: """ Triangulate a polygonal mesh. Args: faces (torch.Tensor): [..., L, P] polygonal faces vertices (torch.Tensor, optional): [..., N, 3] 3-dimensional vertices. If given, the triangulation is performed according to the distance between vertices. Defaults to None. backslash (torch.Tensor, optional): [..., L] boolean array indicating how to triangulate the quad faces. Defaults to None. Returns: (torch.Tensor): [L * (P - 2), 3] triangular faces """ if faces.shape[-1] == 3: return faces P = faces.shape[-1] if vertices is not None: assert faces.shape[-1] == 4, "now only support quad mesh" if backslash is None: faces_idx = faces.long() backslash = torch.norm(vertices[faces_idx[..., 0]] - vertices[faces_idx[..., 2]], p=2, dim=-1) < \ torch.norm(vertices[faces_idx[..., 1]] - vertices[faces_idx[..., 3]], p=2, dim=-1) if backslash is None: loop_indice = torch.stack([ torch.zeros(P - 2, dtype=int), torch.arange(1, P - 1, 1, dtype=int), torch.arange(2, P, 1, dtype=int) ], axis=1) return faces[:, loop_indice].reshape(-1, 3) else: assert faces.shape[-1] == 4, "now only support quad mesh" if isinstance(backslash, bool): if backslash: faces = faces[:, [0, 1, 2, 0, 2, 3]].reshape(-1, 3) else: faces = faces[:, [0, 1, 3, 3, 1, 2]].reshape(-1, 3) else: faces = torch.where( backslash[:, None], faces[:, [0, 1, 2, 0, 2, 3]], faces[:, [0, 1, 3, 3, 1, 2]] ).reshape(-1, 3) return faces @batched(2, None) def compute_face_normal( vertices: torch.Tensor, faces: torch.Tensor ) -> torch.Tensor: """ Compute face normals of a triangular mesh Args: vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices faces (torch.Tensor): [..., T, 3] triangular face indices Returns: normals (torch.Tensor): [..., T, 3] face normals """ N = vertices.shape[0] index = torch.arange(N)[:, None] normal = torch.cross( vertices[index, faces[..., 1].long()] - vertices[index, faces[..., 0].long()], vertices[index, faces[..., 2].long()] - vertices[index, faces[..., 0].long()], dim=-1 ) return F.normalize(normal, p=2, dim=-1) @batched(2, None) def compute_face_angles( vertices: torch.Tensor, faces: torch.Tensor ) -> torch.Tensor: """ Compute face angles of a triangular mesh Args: vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices faces (torch.Tensor): [T, 3] triangular face indices Returns: angles (torch.Tensor): [..., T, 3] face angles """ face_angles = [] for i in range(3): edge1 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 1) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i]) edge2 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 2) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i]) face_angle = torch.arccos(torch.sum(F.normalize(edge1, p=2, dim=-1) * F.normalize(edge2, p=2, dim=-1), dim=-1)) face_angles.append(face_angle) face_angles = torch.stack(face_angles, dim=-1) return face_angles @batched(2, None, 2) def compute_vertex_normal( vertices: torch.Tensor, faces: torch.Tensor, face_normal: torch.Tensor = None ) -> torch.Tensor: """ Compute vertex normals of a triangular mesh by averaging neightboring face normals Args: vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices faces (torch.Tensor): [T, 3] triangular face indices face_normal (torch.Tensor, optional): [..., T, 3] face normals. None to compute face normals from vertices and faces. Defaults to None. Returns: normals (torch.Tensor): [..., N, 3] vertex normals """ N = vertices.shape[0] assert faces.shape[-1] == 3, "Only support triangular mesh" if face_normal is None: face_normal = compute_face_normal(vertices, faces) face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1).flatten(-3, -2) faces = faces.flatten() vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces[None, :]), face_normal, accumulate=True) vertex_normal = F.normalize(vertex_normal, p=2, dim=-1) return vertex_normal @batched(2, None, 2) def compute_vertex_normal_weighted( vertices: torch.Tensor, faces: torch.Tensor, face_normal: torch.Tensor = None ) -> torch.Tensor: """ Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals according to the angles Args: vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices faces (torch.Tensor): [T, 3] triangular face indices face_normal (torch.Tensor, optional): [..., T, 3] face normals. None to compute face normals from vertices and faces. Defaults to None. Returns: normals (torch.Tensor): [..., N, 3] vertex normals """ N = vertices.shape[0] if face_normal is None: face_normal = compute_face_normal(vertices, faces) face_angle = compute_face_angles(vertices, faces) face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1) * face_angle[..., None] vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces.view(N, -1)), face_normal.view(N, -1, 3), accumulate=True) vertex_normal = F.normalize(vertex_normal, p=2, dim=-1) return vertex_normal def remove_unreferenced_vertices( faces: torch.Tensor, *vertice_attrs, return_indices: bool = False ) -> Tuple[torch.Tensor, ...]: """ Remove unreferenced vertices of a mesh. Unreferenced vertices are removed, and the face indices are updated accordingly. Args: faces (torch.Tensor): [T, P] face indices *vertice_attrs: vertex attributes Returns: faces (torch.Tensor): [T, P] face indices *vertice_attrs: vertex attributes indices (torch.Tensor, optional): [N] indices of vertices that are kept. Defaults to None. """ P = faces.shape[-1] fewer_indices, inv_map = torch.unique(faces, return_inverse=True) faces = inv_map.to(torch.int32).reshape(-1, P) ret = [faces] for attr in vertice_attrs: ret.append(attr[fewer_indices]) if return_indices: ret.append(fewer_indices) return tuple(ret) def remove_corrupted_faces( faces: torch.Tensor ) -> torch.Tensor: """ Remove corrupted faces (faces with duplicated vertices) Args: faces (torch.Tensor): [T, 3] triangular face indices Returns: torch.Tensor: [T_, 3] triangular face indices """ corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0]) return faces[~corrupted] def merge_duplicate_vertices( vertices: torch.Tensor, faces: torch.Tensor, tol: float = 1e-6 ) -> Tuple[torch.Tensor, torch.Tensor]: """ Merge duplicate vertices of a triangular mesh. Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly. Args: vertices (torch.Tensor): [N, 3] 3-dimensional vertices faces (torch.Tensor): [T, 3] triangular face indices tol (float, optional): tolerance for merging. Defaults to 1e-6. Returns: vertices (torch.Tensor): [N_, 3] 3-dimensional vertices faces (torch.Tensor): [T, 3] triangular face indices """ vertices_round = torch.round(vertices / tol) uni, uni_inv = torch.unique(vertices_round, dim=0, return_inverse=True) uni[uni_inv] = vertices faces = uni_inv[faces] return uni, faces def subdivide_mesh_simple(vertices: torch.Tensor, faces: torch.Tensor, n: int = 1) -> Tuple[torch.Tensor, torch.Tensor]: """ Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles. NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list. Args: vertices (torch.Tensor): [N, 3] 3-dimensional vertices faces (torch.Tensor): [T, 3] triangular face indices n (int, optional): number of subdivisions. Defaults to 1. Returns: vertices (torch.Tensor): [N_, 3] subdivided 3-dimensional vertices faces (torch.Tensor): [4 * T, 3] subdivided triangular face indices """ for _ in range(n): edges = torch.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0) edges = torch.sort(edges, dim=2) uni_edges, uni_inv = torch.unique(edges, return_inverse=True, dim=0) midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2 n_vertices = vertices.shape[0] vertices = torch.cat([vertices, midpoints], dim=0) faces = torch.cat([ torch.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1), torch.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1), torch.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1), torch.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1), ], dim=0) return vertices, faces def compute_face_tbn(pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor, eps: float = 1e-7) -> torch.Tensor: """compute TBN matrix for each face Args: pos (torch.Tensor): shape (..., N_pos, 3), positions faces_pos (torch.Tensor): shape(T, 3) uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, faces_uv (torch.Tensor): shape(T, 3) Returns: torch.Tensor: (..., T, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal """ e01 = torch.index_select(pos, dim=-2, index=faces_pos[:, 1]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0]) e02 = torch.index_select(pos, dim=-2, index=faces_pos[:, 2]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0]) uv01 = torch.index_select(uv, dim=-2, index=faces_uv[:, 1]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0]) uv02 = torch.index_select(uv, dim=-2, index=faces_uv[:, 2]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0]) normal = torch.cross(e01, e02) tangent_bitangent = torch.stack([e01, e02], dim=-1) @ torch.inverse(torch.stack([uv01, uv02], dim=-1)) tbn = torch.cat([tangent_bitangent, normal.unsqueeze(-1)], dim=-1) tbn = tbn / (torch.norm(tbn, p=2, dim=-2, keepdim=True) + eps) return tbn def compute_vertex_tbn(faces_topo: torch.Tensor, pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor) -> torch.Tensor: """compute TBN matrix for each face Args: faces_topo (torch.Tensor): (T, 3), face indice of topology pos (torch.Tensor): shape (..., N_pos, 3), positions faces_pos (torch.Tensor): shape(T, 3) uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates, faces_uv (torch.Tensor): shape(T, 3) Returns: torch.Tensor: (..., V, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal """ n_vertices = faces_topo.max().item() + 1 n_tri = faces_topo.shape[-2] batch_shape = pos.shape[:-2] face_tbn = compute_face_tbn(pos, faces_pos, uv, faces_uv) # (..., T, 3, 3) face_tbn = face_tbn[..., :, None, :, :].repeat(*[1] * len(batch_shape), 1, 3, 1, 1).view(*batch_shape, n_tri * 3, 3, 3) # (..., T * 3, 3, 3) vertex_tbn = torch.index_add(torch.zeros(*batch_shape, n_vertices, 3, 3).to(face_tbn), dim=-3, index=faces_topo.view(-1), source=face_tbn) vertex_tbn = vertex_tbn / (torch.norm(vertex_tbn, p=2, dim=-2, keepdim=True) + 1e-7) return vertex_tbn def laplacian(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform') -> torch.Tensor: """Laplacian smooth with cotangent weights Args: vertices (torch.Tensor): shape (..., N, 3) faces (torch.Tensor): shape (T, 3) weight (str): 'uniform' or 'cotangent' """ sum_verts = torch.zeros_like(vertices) # (..., N, 3) sum_weights = torch.zeros(*vertices.shape[:-1]).to(vertices) # (..., N) face_verts = torch.index_select(vertices, -2, faces.view(-1)).view(*vertices.shape[:-2], *faces.shape, vertices.shape[-1]) # (..., T, 3) if weight == 'cotangent': for i in range(3): e1 = face_verts[..., (i + 1) % 3, :] - face_verts[..., i, :] e2 = face_verts[..., (i + 2) % 3, :] - face_verts[..., i, :] cot_angle = (e1 * e2).sum(dim=-1) / torch.cross(e1, e2, dim=-1).norm(p=2, dim=-1) # (..., T, 3) sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 1) % 3], face_verts[..., (i + 2) % 3, :] * cot_angle[..., None]) sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 1) % 3], cot_angle) sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 2) % 3], face_verts[..., (i + 1) % 3, :] * cot_angle[..., None]) sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 2) % 3], cot_angle) elif weight == 'uniform': for i in range(3): sum_verts = torch.index_add(sum_verts, -2, faces[:, i], face_verts[..., (i + 1) % 3, :]) sum_weights = torch.index_add(sum_weights, -1, faces[:, i], torch.ones_like(face_verts[..., i, 0])) else: raise NotImplementedError return sum_verts / (sum_weights[..., None] + 1e-7) def laplacian_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform', times: int = 5) -> torch.Tensor: """Laplacian smooth with cotangent weights Args: vertices (torch.Tensor): shape (..., N, 3) faces (torch.Tensor): shape (T, 3) weight (str): 'uniform' or 'cotangent' """ for _ in range(times): vertices = laplacian(vertices, faces, weight) return vertices def taubin_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, lambda_: float = 0.5, mu_: float = -0.51) -> torch.Tensor: """Taubin smooth mesh Args: vertices (torch.Tensor): _description_ faces (torch.Tensor): _description_ lambda_ (float, optional): _description_. Defaults to 0.5. mu_ (float, optional): _description_. Defaults to -0.51. Returns: torch.Tensor: _description_ """ pt = vertices + lambda_ * laplacian_smooth_mesh(vertices, faces) p = pt + mu_ * laplacian_smooth_mesh(pt, faces) return p def laplacian_hc_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, times: int = 5, alpha: float = 0.5, beta: float = 0.5, weight: str = 'uniform'): """HC algorithm from Improved Laplacian Smoothing of Noisy Surface Meshes by J.Vollmer et al. """ p = vertices for i in range(times): q = p p = laplacian_smooth_mesh(vertices, faces, weight) b = p - (alpha * vertices + (1 - alpha) * q) p = p - (beta * b + (1 - beta) * laplacian_smooth_mesh(b, faces, weight)) * 0.8 return p