MoGe / utils3d /torch /mesh.py
Ruicheng's picture
first commit
ec0c8fa
raw
history blame
16.1 kB
import torch
import torch.nn.functional as F
from typing import *
from ._helpers import batched
__all__ = [
'triangulate',
'compute_face_normal',
'compute_face_angles',
'compute_vertex_normal',
'compute_vertex_normal_weighted',
'remove_unreferenced_vertices',
'remove_corrupted_faces',
'merge_duplicate_vertices',
'subdivide_mesh_simple',
'compute_face_tbn',
'compute_vertex_tbn',
'laplacian',
'laplacian_smooth_mesh',
'taubin_smooth_mesh',
'laplacian_hc_smooth_mesh',
]
def triangulate(
faces: torch.Tensor,
vertices: torch.Tensor = None,
backslash: bool = None
) -> torch.Tensor:
"""
Triangulate a polygonal mesh.
Args:
faces (torch.Tensor): [..., L, P] polygonal faces
vertices (torch.Tensor, optional): [..., N, 3] 3-dimensional vertices.
If given, the triangulation is performed according to the distance
between vertices. Defaults to None.
backslash (torch.Tensor, optional): [..., L] boolean array indicating
how to triangulate the quad faces. Defaults to None.
Returns:
(torch.Tensor): [L * (P - 2), 3] triangular faces
"""
if faces.shape[-1] == 3:
return faces
P = faces.shape[-1]
if vertices is not None:
assert faces.shape[-1] == 4, "now only support quad mesh"
if backslash is None:
faces_idx = faces.long()
backslash = torch.norm(vertices[faces_idx[..., 0]] - vertices[faces_idx[..., 2]], p=2, dim=-1) < \
torch.norm(vertices[faces_idx[..., 1]] - vertices[faces_idx[..., 3]], p=2, dim=-1)
if backslash is None:
loop_indice = torch.stack([
torch.zeros(P - 2, dtype=int),
torch.arange(1, P - 1, 1, dtype=int),
torch.arange(2, P, 1, dtype=int)
], axis=1)
return faces[:, loop_indice].reshape(-1, 3)
else:
assert faces.shape[-1] == 4, "now only support quad mesh"
if isinstance(backslash, bool):
if backslash:
faces = faces[:, [0, 1, 2, 0, 2, 3]].reshape(-1, 3)
else:
faces = faces[:, [0, 1, 3, 3, 1, 2]].reshape(-1, 3)
else:
faces = torch.where(
backslash[:, None],
faces[:, [0, 1, 2, 0, 2, 3]],
faces[:, [0, 1, 3, 3, 1, 2]]
).reshape(-1, 3)
return faces
@batched(2, None)
def compute_face_normal(
vertices: torch.Tensor,
faces: torch.Tensor
) -> torch.Tensor:
"""
Compute face normals of a triangular mesh
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [..., T, 3] triangular face indices
Returns:
normals (torch.Tensor): [..., T, 3] face normals
"""
N = vertices.shape[0]
index = torch.arange(N)[:, None]
normal = torch.cross(
vertices[index, faces[..., 1].long()] - vertices[index, faces[..., 0].long()],
vertices[index, faces[..., 2].long()] - vertices[index, faces[..., 0].long()],
dim=-1
)
return F.normalize(normal, p=2, dim=-1)
@batched(2, None)
def compute_face_angles(
vertices: torch.Tensor,
faces: torch.Tensor
) -> torch.Tensor:
"""
Compute face angles of a triangular mesh
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
Returns:
angles (torch.Tensor): [..., T, 3] face angles
"""
face_angles = []
for i in range(3):
edge1 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 1) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i])
edge2 = torch.index_select(vertices, dim=-2, index=faces[:, (i + 2) % 3]) - torch.index_select(vertices, dim=-2, index=faces[:, i])
face_angle = torch.arccos(torch.sum(F.normalize(edge1, p=2, dim=-1) * F.normalize(edge2, p=2, dim=-1), dim=-1))
face_angles.append(face_angle)
face_angles = torch.stack(face_angles, dim=-1)
return face_angles
@batched(2, None, 2)
def compute_vertex_normal(
vertices: torch.Tensor,
faces: torch.Tensor,
face_normal: torch.Tensor = None
) -> torch.Tensor:
"""
Compute vertex normals of a triangular mesh by averaging neightboring face normals
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
face_normal (torch.Tensor, optional): [..., T, 3] face normals.
None to compute face normals from vertices and faces. Defaults to None.
Returns:
normals (torch.Tensor): [..., N, 3] vertex normals
"""
N = vertices.shape[0]
assert faces.shape[-1] == 3, "Only support triangular mesh"
if face_normal is None:
face_normal = compute_face_normal(vertices, faces)
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1).flatten(-3, -2)
faces = faces.flatten()
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces[None, :]), face_normal, accumulate=True)
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1)
return vertex_normal
@batched(2, None, 2)
def compute_vertex_normal_weighted(
vertices: torch.Tensor,
faces: torch.Tensor,
face_normal: torch.Tensor = None
) -> torch.Tensor:
"""
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals
according to the angles
Args:
vertices (torch.Tensor): [..., N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
face_normal (torch.Tensor, optional): [..., T, 3] face normals.
None to compute face normals from vertices and faces. Defaults to None.
Returns:
normals (torch.Tensor): [..., N, 3] vertex normals
"""
N = vertices.shape[0]
if face_normal is None:
face_normal = compute_face_normal(vertices, faces)
face_angle = compute_face_angles(vertices, faces)
face_normal = face_normal[:, :, None, :].expand(-1, -1, 3, -1) * face_angle[..., None]
vertex_normal = torch.index_put(torch.zeros_like(vertices), (torch.arange(N)[:, None], faces.view(N, -1)), face_normal.view(N, -1, 3), accumulate=True)
vertex_normal = F.normalize(vertex_normal, p=2, dim=-1)
return vertex_normal
def remove_unreferenced_vertices(
faces: torch.Tensor,
*vertice_attrs,
return_indices: bool = False
) -> Tuple[torch.Tensor, ...]:
"""
Remove unreferenced vertices of a mesh.
Unreferenced vertices are removed, and the face indices are updated accordingly.
Args:
faces (torch.Tensor): [T, P] face indices
*vertice_attrs: vertex attributes
Returns:
faces (torch.Tensor): [T, P] face indices
*vertice_attrs: vertex attributes
indices (torch.Tensor, optional): [N] indices of vertices that are kept. Defaults to None.
"""
P = faces.shape[-1]
fewer_indices, inv_map = torch.unique(faces, return_inverse=True)
faces = inv_map.to(torch.int32).reshape(-1, P)
ret = [faces]
for attr in vertice_attrs:
ret.append(attr[fewer_indices])
if return_indices:
ret.append(fewer_indices)
return tuple(ret)
def remove_corrupted_faces(
faces: torch.Tensor
) -> torch.Tensor:
"""
Remove corrupted faces (faces with duplicated vertices)
Args:
faces (torch.Tensor): [T, 3] triangular face indices
Returns:
torch.Tensor: [T_, 3] triangular face indices
"""
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0])
return faces[~corrupted]
def merge_duplicate_vertices(
vertices: torch.Tensor,
faces: torch.Tensor,
tol: float = 1e-6
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Merge duplicate vertices of a triangular mesh.
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly.
Args:
vertices (torch.Tensor): [N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
tol (float, optional): tolerance for merging. Defaults to 1e-6.
Returns:
vertices (torch.Tensor): [N_, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
"""
vertices_round = torch.round(vertices / tol)
uni, uni_inv = torch.unique(vertices_round, dim=0, return_inverse=True)
uni[uni_inv] = vertices
faces = uni_inv[faces]
return uni, faces
def subdivide_mesh_simple(vertices: torch.Tensor, faces: torch.Tensor, n: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles.
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list.
Args:
vertices (torch.Tensor): [N, 3] 3-dimensional vertices
faces (torch.Tensor): [T, 3] triangular face indices
n (int, optional): number of subdivisions. Defaults to 1.
Returns:
vertices (torch.Tensor): [N_, 3] subdivided 3-dimensional vertices
faces (torch.Tensor): [4 * T, 3] subdivided triangular face indices
"""
for _ in range(n):
edges = torch.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], dim=0)
edges = torch.sort(edges, dim=2)
uni_edges, uni_inv = torch.unique(edges, return_inverse=True, dim=0)
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2
n_vertices = vertices.shape[0]
vertices = torch.cat([vertices, midpoints], dim=0)
faces = torch.cat([
torch.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1),
torch.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1),
torch.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1),
torch.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1),
], dim=0)
return vertices, faces
def compute_face_tbn(pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
"""compute TBN matrix for each face
Args:
pos (torch.Tensor): shape (..., N_pos, 3), positions
faces_pos (torch.Tensor): shape(T, 3)
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates,
faces_uv (torch.Tensor): shape(T, 3)
Returns:
torch.Tensor: (..., T, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal
"""
e01 = torch.index_select(pos, dim=-2, index=faces_pos[:, 1]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0])
e02 = torch.index_select(pos, dim=-2, index=faces_pos[:, 2]) - torch.index_select(pos, dim=-2, index=faces_pos[:, 0])
uv01 = torch.index_select(uv, dim=-2, index=faces_uv[:, 1]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0])
uv02 = torch.index_select(uv, dim=-2, index=faces_uv[:, 2]) - torch.index_select(uv, dim=-2, index=faces_uv[:, 0])
normal = torch.cross(e01, e02)
tangent_bitangent = torch.stack([e01, e02], dim=-1) @ torch.inverse(torch.stack([uv01, uv02], dim=-1))
tbn = torch.cat([tangent_bitangent, normal.unsqueeze(-1)], dim=-1)
tbn = tbn / (torch.norm(tbn, p=2, dim=-2, keepdim=True) + eps)
return tbn
def compute_vertex_tbn(faces_topo: torch.Tensor, pos: torch.Tensor, faces_pos: torch.Tensor, uv: torch.Tensor, faces_uv: torch.Tensor) -> torch.Tensor:
"""compute TBN matrix for each face
Args:
faces_topo (torch.Tensor): (T, 3), face indice of topology
pos (torch.Tensor): shape (..., N_pos, 3), positions
faces_pos (torch.Tensor): shape(T, 3)
uv (torch.Tensor): shape (..., N_uv, 3) uv coordinates,
faces_uv (torch.Tensor): shape(T, 3)
Returns:
torch.Tensor: (..., V, 3, 3) TBN matrix for each face. Note TBN vectors are normalized but not necessarily orthognal
"""
n_vertices = faces_topo.max().item() + 1
n_tri = faces_topo.shape[-2]
batch_shape = pos.shape[:-2]
face_tbn = compute_face_tbn(pos, faces_pos, uv, faces_uv) # (..., T, 3, 3)
face_tbn = face_tbn[..., :, None, :, :].repeat(*[1] * len(batch_shape), 1, 3, 1, 1).view(*batch_shape, n_tri * 3, 3, 3) # (..., T * 3, 3, 3)
vertex_tbn = torch.index_add(torch.zeros(*batch_shape, n_vertices, 3, 3).to(face_tbn), dim=-3, index=faces_topo.view(-1), source=face_tbn)
vertex_tbn = vertex_tbn / (torch.norm(vertex_tbn, p=2, dim=-2, keepdim=True) + 1e-7)
return vertex_tbn
def laplacian(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform') -> torch.Tensor:
"""Laplacian smooth with cotangent weights
Args:
vertices (torch.Tensor): shape (..., N, 3)
faces (torch.Tensor): shape (T, 3)
weight (str): 'uniform' or 'cotangent'
"""
sum_verts = torch.zeros_like(vertices) # (..., N, 3)
sum_weights = torch.zeros(*vertices.shape[:-1]).to(vertices) # (..., N)
face_verts = torch.index_select(vertices, -2, faces.view(-1)).view(*vertices.shape[:-2], *faces.shape, vertices.shape[-1]) # (..., T, 3)
if weight == 'cotangent':
for i in range(3):
e1 = face_verts[..., (i + 1) % 3, :] - face_verts[..., i, :]
e2 = face_verts[..., (i + 2) % 3, :] - face_verts[..., i, :]
cot_angle = (e1 * e2).sum(dim=-1) / torch.cross(e1, e2, dim=-1).norm(p=2, dim=-1) # (..., T, 3)
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 1) % 3], face_verts[..., (i + 2) % 3, :] * cot_angle[..., None])
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 1) % 3], cot_angle)
sum_verts = torch.index_add(sum_verts, -2, faces[:, (i + 2) % 3], face_verts[..., (i + 1) % 3, :] * cot_angle[..., None])
sum_weights = torch.index_add(sum_weights, -1, faces[:, (i + 2) % 3], cot_angle)
elif weight == 'uniform':
for i in range(3):
sum_verts = torch.index_add(sum_verts, -2, faces[:, i], face_verts[..., (i + 1) % 3, :])
sum_weights = torch.index_add(sum_weights, -1, faces[:, i], torch.ones_like(face_verts[..., i, 0]))
else:
raise NotImplementedError
return sum_verts / (sum_weights[..., None] + 1e-7)
def laplacian_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, weight: str = 'uniform', times: int = 5) -> torch.Tensor:
"""Laplacian smooth with cotangent weights
Args:
vertices (torch.Tensor): shape (..., N, 3)
faces (torch.Tensor): shape (T, 3)
weight (str): 'uniform' or 'cotangent'
"""
for _ in range(times):
vertices = laplacian(vertices, faces, weight)
return vertices
def taubin_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, lambda_: float = 0.5, mu_: float = -0.51) -> torch.Tensor:
"""Taubin smooth mesh
Args:
vertices (torch.Tensor): _description_
faces (torch.Tensor): _description_
lambda_ (float, optional): _description_. Defaults to 0.5.
mu_ (float, optional): _description_. Defaults to -0.51.
Returns:
torch.Tensor: _description_
"""
pt = vertices + lambda_ * laplacian_smooth_mesh(vertices, faces)
p = pt + mu_ * laplacian_smooth_mesh(pt, faces)
return p
def laplacian_hc_smooth_mesh(vertices: torch.Tensor, faces: torch.Tensor, times: int = 5, alpha: float = 0.5, beta: float = 0.5, weight: str = 'uniform'):
"""HC algorithm from Improved Laplacian Smoothing of Noisy Surface Meshes by J.Vollmer et al.
"""
p = vertices
for i in range(times):
q = p
p = laplacian_smooth_mesh(vertices, faces, weight)
b = p - (alpha * vertices + (1 - alpha) * q)
p = p - (beta * b + (1 - beta) * laplacian_smooth_mesh(b, faces, weight)) * 0.8
return p