import os import torch import gradio as gr import torchaudio import time from datetime import datetime from tortoise.api import TextToSpeech from tortoise.utils.text import split_and_recombine_text from tortoise.utils.audio import load_audio, load_voice, load_voices VOICE_OPTIONS = [ "angie", "deniro", "freeman", "random", # special option for random voice ] def inference( text, script, voice, voice_b, seed, split_by_newline, ): if text is None or text.strip() == "": with open(script.name) as f: text = f.read() if text.strip() == "": raise gr.Error("Please provide either text or script file with content.") if split_by_newline == "Yes": texts = list(filter(lambda x: x.strip() != "", text.split("\n"))) else: texts = split_and_recombine_text(text) voices = [voice] if voice_b != "disabled": voices.append(voice_b) if len(voices) == 1: voice_samples, conditioning_latents = load_voice(voice) else: voice_samples, conditioning_latents = load_voices(voices) start_time = time.time() # all_parts = [] for j, text in enumerate(texts): for audio_frame in tts.tts_with_preset( text, voice_samples=voice_samples, conditioning_latents=conditioning_latents, preset="ultra_fast", k=1 ): # print("Time taken: ", time.time() - start_time) # all_parts.append(audio_frame) yield (24000, audio_frame.cpu().detach().numpy()) # wav = torch.cat(all_parts, dim=0).unsqueeze(0) # print(wav.shape) # torchaudio.save("output.wav", wav.cpu(), 24000) # yield (None, gr.make_waveform(audio="output.wav",)) def main(): title = "Tortoise TTS 🐢" description = """ A text-to-speech system which powers lot of organizations in Speech synthesis domain.
a model with strong multi-voice capabilities, highly realistic prosody and intonation.
for faster inference, use the 'ultra_fast' preset and duplicate space if you don't want to wait in a queue.
""" text = gr.Textbox( lines=4, label="Text (Provide either text, or upload a newline separated text file below):", ) script = gr.File(label="Upload a text file") voice = gr.Dropdown( VOICE_OPTIONS, value="jane_eyre", label="Select voice:", type="value" ) voice_b = gr.Dropdown( VOICE_OPTIONS, value="disabled", label="(Optional) Select second voice:", type="value", ) split_by_newline = gr.Radio( ["Yes", "No"], label="Split by newline (If [No], it will automatically try to find relevant splits):", type="value", value="No", ) output_audio = gr.Audio(label="streaming audio:", streaming=True, autoplay=True) # download_audio = gr.Audio(label="dowanload audio:") interface = gr.Interface( fn=inference, inputs=[ text, script, voice, voice_b, split_by_newline, ], title=title, description=description, outputs=[output_audio], ) interface.queue().launch() if __name__ == "__main__": tts = TextToSpeech(kv_cache=True, use_deepspeed=True, half=True) with open("Tortoise_TTS_Runs_Scripts.log", "a") as f: f.write( f"\n\n-------------------------Tortoise TTS Scripts Logs, {datetime.now()}-------------------------\n" ) main()