import subprocess def install_spacy_model(model_name): try: subprocess.check_call(["python", "-m", "spacy", "download", model_name]) except subprocess.CalledProcessError as e: print(f"Error occurred while installing the model: {model_name}") print(f"Error details: {str(e)}") install_spacy_model("en_core_web_trf") import gradio as gr import torch from syngen_diffusion_pipeline import SynGenDiffusionPipeline model_path = 'CompVis/stable-diffusion-v1-4' device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') pipe = SynGenDiffusionPipeline.from_pretrained(model_path).to(device) def generate_fn(prompt, seed): generator = torch.Generator(device.type).manual_seed(int(seed)) result = pipe(prompt=prompt, generator=generator, num_inference_steps=50) return result['images'][0] title = "SynGen" description = """ This is the demo for [SynGen](https://github.com/RoyiRa/Syntax-Guided-Generation), an image synthesis approach which first syntactically analyses the prompt to identify entities and their modifiers, and then uses a novel loss function that encourages the cross-attention maps to agree with the linguistic binding reflected by the syntax. Preprint: \"Linguistic Binding in Diffusion Models: Enhancing Attribute Correspondence through Attention Map Alignment\"(https://arxiv.org/abs/2306.08877). """ examples = [ ["the apple is blue and the carrot is purple", "20"], ["a yellow flamingo and a pink sunflower", "16"], ["a checkered bowl in a cluttered room", "77"], ["a horned lion and a spotted monkey", "1269"] ] prompt_textbox = gr.Textbox(label="Prompt", placeholder="a pink sunflower and a yellow flamingo", lines=1) seed_textbox = gr.Textbox(label="Seed", placeholder="42", lines=1) output = gr.Image(label="generation") demo = gr.Interface(fn=generate_fn, inputs=[prompt_textbox, seed_textbox], outputs=output, examples=examples, title=title, description=description, allow_flagging=False) demo.launch()