import sys sys.path.insert(0, '../') from collections import OrderedDict import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch_utils import misc from torch_utils import persistence from torch_utils.ops import conv2d_resample from torch_utils.ops import upfirdn2d from torch_utils.ops import bias_act #---------------------------------------------------------------------------- @misc.profiled_function def normalize_2nd_moment(x, dim=1, eps=1e-8): return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt() #---------------------------------------------------------------------------- @persistence.persistent_class class FullyConnectedLayer(nn.Module): def __init__(self, in_features, # Number of input features. out_features, # Number of output features. bias = True, # Apply additive bias before the activation function? activation = 'linear', # Activation function: 'relu', 'lrelu', etc. lr_multiplier = 1, # Learning rate multiplier. bias_init = 0, # Initial value for the additive bias. ): super().__init__() self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None self.activation = activation self.weight_gain = lr_multiplier / np.sqrt(in_features) self.bias_gain = lr_multiplier def forward(self, x): w = self.weight * self.weight_gain b = self.bias if b is not None and self.bias_gain != 1: b = b * self.bias_gain if self.activation == 'linear' and b is not None: # out = torch.addmm(b.unsqueeze(0), x, w.t()) x = x.matmul(w.t()) out = x + b.reshape([-1 if i == x.ndim-1 else 1 for i in range(x.ndim)]) else: x = x.matmul(w.t()) out = bias_act.bias_act(x, b, act=self.activation, dim=x.ndim-1) return out #---------------------------------------------------------------------------- @persistence.persistent_class class Conv2dLayer(nn.Module): def __init__(self, in_channels, # Number of input channels. out_channels, # Number of output channels. kernel_size, # Width and height of the convolution kernel. bias = True, # Apply additive bias before the activation function? activation = 'linear', # Activation function: 'relu', 'lrelu', etc. up = 1, # Integer upsampling factor. down = 1, # Integer downsampling factor. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output to +-X, None = disable clamping. trainable = True, # Update the weights of this layer during training? ): super().__init__() self.activation = activation self.up = up self.down = down self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.conv_clamp = conv_clamp self.padding = kernel_size // 2 self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) self.act_gain = bias_act.activation_funcs[activation].def_gain weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]) bias = torch.zeros([out_channels]) if bias else None if trainable: self.weight = torch.nn.Parameter(weight) self.bias = torch.nn.Parameter(bias) if bias is not None else None else: self.register_buffer('weight', weight) if bias is not None: self.register_buffer('bias', bias) else: self.bias = None def forward(self, x, gain=1): w = self.weight * self.weight_gain x = conv2d_resample.conv2d_resample(x=x, w=w, f=self.resample_filter, up=self.up, down=self.down, padding=self.padding) act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None out = bias_act.bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp) return out #---------------------------------------------------------------------------- @persistence.persistent_class class ModulatedConv2d(nn.Module): def __init__(self, in_channels, # Number of input channels. out_channels, # Number of output channels. kernel_size, # Width and height of the convolution kernel. style_dim, # dimension of the style code demodulate=True, # perfrom demodulation up=1, # Integer upsampling factor. down=1, # Integer downsampling factor. resample_filter=[1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp=None, # Clamp the output to +-X, None = disable clamping. ): super().__init__() self.demodulate = demodulate self.weight = torch.nn.Parameter(torch.randn([1, out_channels, in_channels, kernel_size, kernel_size])) self.out_channels = out_channels self.kernel_size = kernel_size self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2)) self.padding = self.kernel_size // 2 self.up = up self.down = down self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.conv_clamp = conv_clamp self.affine = FullyConnectedLayer(style_dim, in_channels, bias_init=1) def forward(self, x, style): batch, in_channels, height, width = x.shape style = self.affine(style).view(batch, 1, in_channels, 1, 1) weight = self.weight * self.weight_gain * style if self.demodulate: decoefs = (weight.pow(2).sum(dim=[2, 3, 4]) + 1e-8).rsqrt() weight = weight * decoefs.view(batch, self.out_channels, 1, 1, 1) weight = weight.view(batch * self.out_channels, in_channels, self.kernel_size, self.kernel_size) x = x.view(1, batch * in_channels, height, width) x = conv2d_resample.conv2d_resample(x=x, w=weight, f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, groups=batch) out = x.view(batch, self.out_channels, *x.shape[2:]) return out #---------------------------------------------------------------------------- @persistence.persistent_class class StyleConv(torch.nn.Module): def __init__(self, in_channels, # Number of input channels. out_channels, # Number of output channels. style_dim, # Intermediate latent (W) dimensionality. resolution, # Resolution of this layer. kernel_size = 3, # Convolution kernel size. up = 1, # Integer upsampling factor. use_noise = True, # Enable noise input? activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. resample_filter = [1,3,3,1], # Low-pass filter to apply when resampling activations. conv_clamp = None, # Clamp the output of convolution layers to +-X, None = disable clamping. demodulate = True, # perform demodulation ): super().__init__() self.conv = ModulatedConv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, style_dim=style_dim, demodulate=demodulate, up=up, resample_filter=resample_filter, conv_clamp=conv_clamp) self.use_noise = use_noise self.resolution = resolution if use_noise: self.register_buffer('noise_const', torch.randn([resolution, resolution])) self.noise_strength = torch.nn.Parameter(torch.zeros([])) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) self.activation = activation self.act_gain = bias_act.activation_funcs[activation].def_gain self.conv_clamp = conv_clamp def forward(self, x, style, noise_mode='random', gain=1): x = self.conv(x, style) assert noise_mode in ['random', 'const', 'none'] if self.use_noise: if noise_mode == 'random': xh, xw = x.size()[-2:] noise = torch.randn([x.shape[0], 1, xh, xw], device=x.device) \ * self.noise_strength if noise_mode == 'const': noise = self.noise_const * self.noise_strength x = x + noise act_gain = self.act_gain * gain act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None out = bias_act.bias_act(x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp) return out #---------------------------------------------------------------------------- @persistence.persistent_class class ToRGB(torch.nn.Module): def __init__(self, in_channels, out_channels, style_dim, kernel_size=1, resample_filter=[1,3,3,1], conv_clamp=None, demodulate=False): super().__init__() self.conv = ModulatedConv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, style_dim=style_dim, demodulate=demodulate, resample_filter=resample_filter, conv_clamp=conv_clamp) self.bias = torch.nn.Parameter(torch.zeros([out_channels])) self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter)) self.conv_clamp = conv_clamp def forward(self, x, style, skip=None): x = self.conv(x, style) out = bias_act.bias_act(x, self.bias, clamp=self.conv_clamp) if skip is not None: if skip.shape != out.shape: skip = upfirdn2d.upsample2d(skip, self.resample_filter) out = out + skip return out #---------------------------------------------------------------------------- @misc.profiled_function def get_style_code(a, b): return torch.cat([a, b], dim=1) #---------------------------------------------------------------------------- @persistence.persistent_class class DecBlockFirst(nn.Module): def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): super().__init__() self.fc = FullyConnectedLayer(in_features=in_channels*2, out_features=in_channels*4**2, activation=activation) self.conv = StyleConv(in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=4, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB(in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, ws, gs, E_features, noise_mode='random'): x = self.fc(x).view(x.shape[0], -1, 4, 4) x = x + E_features[2] style = get_style_code(ws[:, 0], gs) x = self.conv(x, style, noise_mode=noise_mode) style = get_style_code(ws[:, 1], gs) img = self.toRGB(x, style, skip=None) return x, img @persistence.persistent_class class DecBlockFirstV2(nn.Module): def __init__(self, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): super().__init__() self.conv0 = Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, ) self.conv1 = StyleConv(in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=4, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB(in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, ws, gs, E_features, noise_mode='random'): # x = self.fc(x).view(x.shape[0], -1, 4, 4) x = self.conv0(x) x = x + E_features[2] style = get_style_code(ws[:, 0], gs) x = self.conv1(x, style, noise_mode=noise_mode) style = get_style_code(ws[:, 1], gs) img = self.toRGB(x, style, skip=None) return x, img #---------------------------------------------------------------------------- @persistence.persistent_class class DecBlock(nn.Module): def __init__(self, res, in_channels, out_channels, activation, style_dim, use_noise, demodulate, img_channels): # res = 2, ..., resolution_log2 super().__init__() self.res = res self.conv0 = StyleConv(in_channels=in_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, up=2, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.conv1 = StyleConv(in_channels=out_channels, out_channels=out_channels, style_dim=style_dim, resolution=2**res, kernel_size=3, use_noise=use_noise, activation=activation, demodulate=demodulate, ) self.toRGB = ToRGB(in_channels=out_channels, out_channels=img_channels, style_dim=style_dim, kernel_size=1, demodulate=False, ) def forward(self, x, img, ws, gs, E_features, noise_mode='random'): style = get_style_code(ws[:, self.res * 2 - 5], gs) x = self.conv0(x, style, noise_mode=noise_mode) x = x + E_features[self.res] style = get_style_code(ws[:, self.res * 2 - 4], gs) x = self.conv1(x, style, noise_mode=noise_mode) style = get_style_code(ws[:, self.res * 2 - 3], gs) img = self.toRGB(x, style, skip=img) return x, img #---------------------------------------------------------------------------- @persistence.persistent_class class MappingNet(torch.nn.Module): def __init__(self, z_dim, # Input latent (Z) dimensionality, 0 = no latent. c_dim, # Conditioning label (C) dimensionality, 0 = no label. w_dim, # Intermediate latent (W) dimensionality. num_ws, # Number of intermediate latents to output, None = do not broadcast. num_layers = 8, # Number of mapping layers. embed_features = None, # Label embedding dimensionality, None = same as w_dim. layer_features = None, # Number of intermediate features in the mapping layers, None = same as w_dim. activation = 'lrelu', # Activation function: 'relu', 'lrelu', etc. lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers. w_avg_beta = 0.995, # Decay for tracking the moving average of W during training, None = do not track. ): super().__init__() self.z_dim = z_dim self.c_dim = c_dim self.w_dim = w_dim self.num_ws = num_ws self.num_layers = num_layers self.w_avg_beta = w_avg_beta if embed_features is None: embed_features = w_dim if c_dim == 0: embed_features = 0 if layer_features is None: layer_features = w_dim features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim] if c_dim > 0: self.embed = FullyConnectedLayer(c_dim, embed_features) for idx in range(num_layers): in_features = features_list[idx] out_features = features_list[idx + 1] layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier) setattr(self, f'fc{idx}', layer) if num_ws is not None and w_avg_beta is not None: self.register_buffer('w_avg', torch.zeros([w_dim])) def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False): # Embed, normalize, and concat inputs. x = None with torch.autograd.profiler.record_function('input'): if self.z_dim > 0: x = normalize_2nd_moment(z.to(torch.float32)) if self.c_dim > 0: y = normalize_2nd_moment(self.embed(c.to(torch.float32))) x = torch.cat([x, y], dim=1) if x is not None else y # Main layers. for idx in range(self.num_layers): layer = getattr(self, f'fc{idx}') x = layer(x) # Update moving average of W. if self.w_avg_beta is not None and self.training and not skip_w_avg_update: with torch.autograd.profiler.record_function('update_w_avg'): self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta)) # Broadcast. if self.num_ws is not None: with torch.autograd.profiler.record_function('broadcast'): x = x.unsqueeze(1).repeat([1, self.num_ws, 1]) # Apply truncation. if truncation_psi != 1: with torch.autograd.profiler.record_function('truncate'): assert self.w_avg_beta is not None if self.num_ws is None or truncation_cutoff is None: x = self.w_avg.lerp(x, truncation_psi) else: x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi) return x #---------------------------------------------------------------------------- @persistence.persistent_class class DisFromRGB(nn.Module): def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2 super().__init__() self.conv = Conv2dLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=1, activation=activation, ) def forward(self, x): return self.conv(x) #---------------------------------------------------------------------------- @persistence.persistent_class class DisBlock(nn.Module): def __init__(self, in_channels, out_channels, activation): # res = 2, ..., resolution_log2 super().__init__() self.conv0 = Conv2dLayer(in_channels=in_channels, out_channels=in_channels, kernel_size=3, activation=activation, ) self.conv1 = Conv2dLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=3, down=2, activation=activation, ) self.skip = Conv2dLayer(in_channels=in_channels, out_channels=out_channels, kernel_size=1, down=2, bias=False, ) def forward(self, x): skip = self.skip(x, gain=np.sqrt(0.5)) x = self.conv0(x) x = self.conv1(x, gain=np.sqrt(0.5)) out = skip + x return out #---------------------------------------------------------------------------- @persistence.persistent_class class MinibatchStdLayer(torch.nn.Module): def __init__(self, group_size, num_channels=1): super().__init__() self.group_size = group_size self.num_channels = num_channels def forward(self, x): N, C, H, W = x.shape with misc.suppress_tracer_warnings(): # as_tensor results are registered as constants G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N F = self.num_channels c = C // F y = x.reshape(G, -1, F, c, H, W) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c. y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group. y = y.square().mean(dim=0) # [nFcHW] Calc variance over group. y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group. y = y.mean(dim=[2, 3, 4]) # [nF] Take average over channels and pixels. y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions. y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels. x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels. return x #---------------------------------------------------------------------------- @persistence.persistent_class class Discriminator(torch.nn.Module): def __init__(self, c_dim, # Conditioning label (C) dimensionality. img_resolution, # Input resolution. img_channels, # Number of input color channels. channel_base = 32768, # Overall multiplier for the number of channels. channel_max = 512, # Maximum number of channels in any layer. channel_decay = 1, cmap_dim = None, # Dimensionality of mapped conditioning label, None = default. activation = 'lrelu', mbstd_group_size = 4, # Group size for the minibatch standard deviation layer, None = entire minibatch. mbstd_num_channels = 1, # Number of features for the minibatch standard deviation layer, 0 = disable. ): super().__init__() self.c_dim = c_dim self.img_resolution = img_resolution self.img_channels = img_channels resolution_log2 = int(np.log2(img_resolution)) assert img_resolution == 2 ** resolution_log2 and img_resolution >= 4 self.resolution_log2 = resolution_log2 def nf(stage): return np.clip(int(channel_base / 2 ** (stage * channel_decay)), 1, channel_max) if cmap_dim == None: cmap_dim = nf(2) if c_dim == 0: cmap_dim = 0 self.cmap_dim = cmap_dim if c_dim > 0: self.mapping = MappingNet(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None) Dis = [DisFromRGB(img_channels+1, nf(resolution_log2), activation)] for res in range(resolution_log2, 2, -1): Dis.append(DisBlock(nf(res), nf(res-1), activation)) if mbstd_num_channels > 0: Dis.append(MinibatchStdLayer(group_size=mbstd_group_size, num_channels=mbstd_num_channels)) Dis.append(Conv2dLayer(nf(2) + mbstd_num_channels, nf(2), kernel_size=3, activation=activation)) self.Dis = nn.Sequential(*Dis) self.fc0 = FullyConnectedLayer(nf(2)*4**2, nf(2), activation=activation) self.fc1 = FullyConnectedLayer(nf(2), 1 if cmap_dim == 0 else cmap_dim) def forward(self, images_in, masks_in, c): x = torch.cat([masks_in - 0.5, images_in], dim=1) x = self.Dis(x) x = self.fc1(self.fc0(x.flatten(start_dim=1))) if self.c_dim > 0: cmap = self.mapping(None, c) if self.cmap_dim > 0: x = (x * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) return x