import cv2 import os import sys import numpy as np import math import glob import pyspng import PIL.Image import torch import lpips def read_image(image_path): with open(image_path, 'rb') as f: if pyspng is not None and image_path.endswith('.png'): image = pyspng.load(f.read()) else: image = np.array(PIL.Image.open(f)) if image.ndim == 2: image = image[:, :, np.newaxis] # HW => HWC if image.shape[2] == 1: image = np.repeat(image, 3, axis=2) image = image.transpose(2, 0, 1) # HWC => CHW image = torch.from_numpy(image).float().unsqueeze(0) image = image / 127.5 - 1 return image def calculate_metrics(folder1, folder2): l1 = sorted(glob.glob(folder1 + '/*.png') + glob.glob(folder1 + '/*.jpg')) l2 = sorted(glob.glob(folder2 + '/*.png') + glob.glob(folder2 + '/*.jpg')) assert(len(l1) == len(l2)) print('length:', len(l1)) # l1 = l1[:3]; l2 = l2[:3]; device = torch.device('cuda:0') loss_fn = lpips.LPIPS(net='alex').to(device) loss_fn.eval() # loss_fn = lpips.LPIPS(net='vgg').to(device) lpips_l = [] with torch.no_grad(): for i, (fpath1, fpath2) in enumerate(zip(l1, l2)): print(i) _, name1 = os.path.split(fpath1) _, name2 = os.path.split(fpath2) name1 = name1.split('.')[0] name2 = name2.split('.')[0] assert name1 == name2, 'Illegal mapping: %s, %s' % (name1, name2) img1 = read_image(fpath1).to(device) img2 = read_image(fpath2).to(device) assert img1.shape == img2.shape, 'Illegal shape' lpips_l.append(loss_fn(img1, img2).mean().cpu().numpy()) res = sum(lpips_l) / len(lpips_l) return res if __name__ == '__main__': folder1 = 'path to the inpainted result' folder2 = 'path to the gt' res = calculate_metrics(folder1, folder2) print('lpips: %.4f' % res) with open('lpips.txt', 'w') as f: f.write('lpips: %.4f' % res)