Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import FluxPipeline | |
# Enable cuDNN benchmarking for potential performance improvement | |
torch.backends.cudnn.benchmark = True | |
# Set up device and data types | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
DTYPE = torch.float16 | |
# Load the model | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-schnell", | |
torch_dtype=torch.bfloat16, | |
) | |
# Configure the pipeline | |
pipe.enable_sequential_cpu_offload() | |
pipe.vae.enable_tiling() | |
pipe = pipe.to(DTYPE) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = pipe( | |
prompt, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
guidance_scale=0.0, | |
height=height, | |
width=width, | |
generator=generator, | |
).images[0] | |
return image, seed | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# FLUX.1 [schnell] Image Generator") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button("Generate") | |
with gr.Column(): | |
result = gr.Image(label="Generated Image") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", randomize=True) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
width = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Width") | |
height = gr.Slider(minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, label="Height") | |
num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=4, label="Number of inference steps") | |
run_button.click( | |
infer, | |
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.launch() |