import math import random from functools import partial from inspect import isfunction from pathlib import Path import numpy as np import torch import torch.nn.functional as F from torch import nn from tqdm import tqdm from einops import rearrange from modules.fastspeech.fs2 import FastSpeech2 from utils.hparams import hparams def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cycle(dl): while True: for data in dl: yield data def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class Mish(nn.Module): def forward(self, x): return x * torch.tanh(F.softplus(x)) class Upsample(nn.Module): def __init__(self, dim): super().__init__() self.conv = nn.ConvTranspose2d(dim, dim, 4, 2, 1) def forward(self, x): return self.conv(x) class Downsample(nn.Module): def __init__(self, dim): super().__init__() self.conv = nn.Conv2d(dim, dim, 3, 2, 1) def forward(self, x): return self.conv(x) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x): return self.fn(x) * self.g # building block modules class Block(nn.Module): def __init__(self, dim, dim_out, groups=8): super().__init__() self.block = nn.Sequential( nn.Conv2d(dim, dim_out, 3, padding=1), nn.GroupNorm(groups, dim_out), Mish() ) def forward(self, x): return self.block(x) class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, *, time_emb_dim, groups=8): super().__init__() self.mlp = nn.Sequential( Mish(), nn.Linear(time_emb_dim, dim_out) ) self.block1 = Block(dim, dim_out) self.block2 = Block(dim_out, dim_out) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb): h = self.block1(x) h += self.mlp(time_emb)[:, :, None, None] h = self.block2(h) return h + self.res_conv(x) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) # gaussian diffusion trainer class def extract(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def noise_like(shape, device, repeat=False): repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) noise = lambda: torch.randn(shape, device=device) return repeat_noise() if repeat else noise() def cosine_beta_schedule(timesteps, s=0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 x = np.linspace(0, steps, steps) alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return np.clip(betas, a_min=0, a_max=0.999) class GaussianDiffusion(nn.Module): def __init__(self, phone_encoder, out_dims, denoise_fn, timesteps=1000, loss_type='l1', betas=None, spec_min=None, spec_max=None): super().__init__() self.denoise_fn = denoise_fn if hparams.get('use_midi') is not None and hparams['use_midi']: self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims) else: self.fs2 = FastSpeech2(phone_encoder, out_dims) self.fs2.decoder = None self.mel_bins = out_dims if exists(betas): betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas else: betas = cosine_beta_schedule(timesteps) alphas = 1. - betas alphas_cumprod = np.cumprod(alphas, axis=0) alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) timesteps, = betas.shape self.num_timesteps = int(timesteps) self.loss_type = loss_type to_torch = partial(torch.tensor, dtype=torch.float32) self.register_buffer('betas', to_torch(betas)) self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) # calculations for diffusion q(x_t | x_{t-1}) and others self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) self.register_buffer('posterior_variance', to_torch(posterior_variance)) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) def q_mean_variance(self, x_start, t): mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start variance = extract(1. - self.alphas_cumprod, t, x_start.shape) log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) return mean, variance, log_variance def predict_start_from_noise(self, x_t, t, noise): return ( extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance(self, x, t, cond, clip_denoised: bool): noise_pred = self.denoise_fn(x, t, cond=cond) x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) if clip_denoised: x_recon.clamp_(-1., 1.) model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance @torch.no_grad() def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) noise = noise_like(x.shape, device, repeat_noise) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): noise = default(noise, lambda: torch.randn_like(x_start)) x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) x_recon = self.denoise_fn(x_noisy, t, cond) if self.loss_type == 'l1': if nonpadding is not None: loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() else: # print('are you sure w/o nonpadding?') loss = (noise - x_recon).abs().mean() elif self.loss_type == 'l2': loss = F.mse_loss(noise, x_recon) else: raise NotImplementedError() return loss def forward(self, txt_tokens, mel2ph=None, spk_embed=None, ref_mels=None, f0=None, uv=None, energy=None, infer=False): b, *_, device = *txt_tokens.shape, txt_tokens.device ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy, skip_decoder=True, infer=infer) cond = ret['decoder_inp'].transpose(1, 2) if not infer: t = torch.randint(0, self.num_timesteps, (b,), device=device).long() x = ref_mels x = self.norm_spec(x) x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] nonpadding = (mel2ph != 0).float() ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding) else: t = self.num_timesteps shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) x = torch.randn(shape, device=device) for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) x = x[:, 0].transpose(1, 2) ret['mel_out'] = self.denorm_spec(x) return ret def norm_spec(self, x): return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 def denorm_spec(self, x): return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) def out2mel(self, x): return x