import streamlit as st from chatbot import llm_chain, chain from sentence_transformers import SentenceTransformer from redis.commands.search.query import Query from database import redis_conn import numpy as np st.title('My Amazon shopping buddy 🏷️') st.caption('🤖 Powered by Falcon Open Source AI model') st.session_state['disabled']= False if "messages" not in st.session_state: st.session_state["messages"] = [{"role": "assistant", "content": "Hey im your online shopping buddy, how can i help you today?"}] for msg in st.session_state["messages"]: st.chat_message(msg["role"]).write(msg["content"]) prompt = st.chat_input(key="user_input",disabled=st.session_state.disabled ) embedding_model = SentenceTransformer('sentence-transformers/all-distilroberta-v1') if prompt: st.session_state["messages"].append({"role": "user", "content": prompt}) st.chat_message('user').write(prompt) st.session_state.disabled = True keywords = chain.run(prompt) #vectorize the query query_vector = embedding_model.encode(keywords) query_vector = np.array(query_vector).astype(np.float32).tobytes() #prepare the query ITEM_KEYWORD_EMBEDDING_FIELD = 'item_vector' topK=5 q = Query(f'*=>[KNN {topK} @{ITEM_KEYWORD_EMBEDDING_FIELD} $vec_param AS vector_score]').sort_by('vector_score').paging(0,topK).return_fields('vector_score','item_name','item_id','item_keywords').dialect(2) params_dict = {"vec_param": query_vector} #Execute the query results = redis_conn.ft().search(q, query_params = params_dict) full_result_string = '' for product in results.docs: full_result_string += product.item_name + ' ' + product.item_keywords + "\n\n\n" result = llm_chain.predict(user_msg=f"{full_result_string} ---\n\n {prompt}") st.session_state.messages.append({"role": "assistant", "content": result}) st.chat_message('assistant').write(result)