import transformers import torch import torch.nn as nn import tensorflow as tf from transformers import TFGPT2LMHeadModel ,GPT2Tokenizer, BitsAndBytesConfig tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2LMHeadModel.from_pretrained('gpt2',pad_token_id = tokenizer.eos_token_id) def generate_text(inp): input_ids = tokenizer.encode(inp,return_tensors = 'tf') beam_output = model.generate(input_ids, max_length = 100,num_beams = 5, no_repeat_ngram_size = 2, early_stopping = True) output = tokenizer.decode(beam_output[0],skip_special_tokens = True, clean_up_tokenization_spaces = True) return ".".join(output.split(".")[:-1]) + "."