import os from sentence_transformers import SentenceTransformer import numpy as np import umap import matplotlib.pyplot as plt import plotly.express as px from sklearn.cluster import KMeans # Step 1: Load skills from all files in a specific date folder def load_skills_from_date(base_folder, date): date_folder = os.path.join(base_folder, date) all_skills = set() # To ensure unique skills if os.path.exists(date_folder) and os.path.isdir(date_folder): for file_name in os.listdir(date_folder): file_path = os.path.join(date_folder, file_name) if file_name.endswith(".txt"): with open(file_path, 'r', encoding='utf-8') as f: all_skills.update(line.strip() for line in f if line.strip()) return list(all_skills) # Step 2: Generate embeddings using a pretrained model def generate_embeddings(skills, model_name="paraphrase-MiniLM-L3-v2"): model = SentenceTransformer(model_name) embeddings = model.encode(skills, convert_to_numpy=True) return embeddings # Step 3: Reduce dimensionality using UMAP def reduce_dimensions(embeddings, n_components=2): reducer = umap.UMAP(n_components=n_components, random_state=42) reduced_embeddings = reducer.fit_transform(embeddings) return reduced_embeddings # Step 4: Visualize the reduced embeddings (2D) def visualize_embeddings_2d(reduced_embeddings, skills, output_folder, date): plt.figure(figsize=(10, 8)) plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1], s=50, alpha=0.8) for i, skill in enumerate(skills): plt.text(reduced_embeddings[i, 0], reduced_embeddings[i, 1], skill, fontsize=9, alpha=0.75) plt.title(f"UMAP Projection of Skill Embeddings ({date})") plt.xlabel("UMAP Dimension 1") plt.ylabel("UMAP Dimension 2") # Save the plot os.makedirs(output_folder, exist_ok=True) plot_path = os.path.join(output_folder, f"{date}_2D_projection.png") plt.savefig(plot_path, format="png", dpi=300) print(f"2D plot saved at {plot_path}") plt.show() # Step 5: Visualize the reduced embeddings (3D) def visualize_embeddings_3d(reduced_embeddings, skills, output_folder, date): fig = px.scatter_3d( x=reduced_embeddings[:, 0], y=reduced_embeddings[:, 1], z=reduced_embeddings[:, 2], text=skills, title=f"3D UMAP Projection of Skill Embeddings ({date})" ) # Save the plot os.makedirs(output_folder, exist_ok=True) plot_path = os.path.join(output_folder, f"{date}_3D_projection.html") fig.write_html(plot_path) print(f"3D plot saved at {plot_path}") fig.show() def perform_kmeans_and_visualize(reduced_embeddings, skills, n_clusters, output_folder, date): kmeans = KMeans(n_clusters=n_clusters, random_state=42) labels = kmeans.fit_predict(reduced_embeddings) fig = px.scatter_3d( x=reduced_embeddings[:, 0], y=reduced_embeddings[:, 1], z=reduced_embeddings[:, 2], color=labels, text=skills, title=f"KMeans Clustering with {n_clusters} Clusters ({date})" ) # Save the clustered plot os.makedirs(output_folder, exist_ok=True) plot_path = os.path.join(output_folder, f"{date}_3D_clustering.html") fig.write_html(plot_path) print(f"3D clustered plot saved at {plot_path}") fig.show() # Main execution base_folder = "./tags" output_folder = "./plots" specific_date = "03-01-2024" # Example date folder to process # Get today's date in the desired format # specific_date = datetime.now().strftime("%d-%m-%Y") n_clusters = 5 # Load skills from the specified date folder skills = load_skills_from_date(base_folder, specific_date) if not skills: print(f"No skills found for the date: {specific_date}") else: print(f"Loaded {len(skills)} unique skills for the date: {specific_date}") # Generate embeddings embeddings = generate_embeddings(skills) # Reduce dimensions to 2D and visualize reduced_embeddings_2d = reduce_dimensions(embeddings, n_components=2) visualize_embeddings_2d(reduced_embeddings_2d, skills, output_folder, specific_date) # Reduce dimensions to 3D and visualize reduced_embeddings_3d = reduce_dimensions(embeddings, n_components=3) visualize_embeddings_3d(reduced_embeddings_3d, skills, output_folder, specific_date) # Perform KMeans clustering and visualize in 3D perform_kmeans_and_visualize(reduced_embeddings_3d, skills, n_clusters, output_folder, specific_date)